Skip to main content

Advertisement

Log in

Aquaporin-1 in the choroid plexuses of developing mammalian brain

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The normal brain develops within a well-controlled stable internal “milieu” protected by specialised mechanisms referred to collectively as blood–brain barriers. A fundamental feature of this environment is the control of water flow in and out of the developing brain. Because of limited vascularisation of the immature brain, choroid plexuses, via the cerebrospinal fluid, have been proposed as the main route of fluid exchange between the blood and brain interfaces. We describe the temporal expression and appearance of aquaporin-1 (AQP1) which is important for water transfer across adult choroid plexuses. AQP1 expression was studied in rat embryos using real time reverse transcription/polymerase chain reaction. mRNA for AQP1 was present in rat brain at embryonic day 12 (E12) one day before the protein was detectable in the fourth ventricular choroid plexus (the first plexus to appear); its relative levels increased at E13-E14 when more AQP1-immunoreactive cells appeared in all plexuses. The presence of AQP1 was determined immunocytochemically in five different mammalian species (rat, mouse, human, sheep and opossum) in all four choroid plexuses from their earliest appearance. In all five species studied, the appearance of AQP1 immunoreactivity followed the same developmental sequence: the fourth, lateral and, finally, third ventricular choroid plexus. The stage of choroid plexus development when AQP1 was first detected in all five species and in all four choroid plexuses corresponded to the transition between Stages I and II. The cellular localisation of AQP1 in all choroid plexuses, as soon as it was detectable, had the characteristic apical membrane distribution previously described in the adult; a basolateral membrane localisation was also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen S (2002) Aquaporin water channels—from atomic structure to clinical medicine. J Physiol (Lond) 542:3–16

    Article  CAS  Google Scholar 

  • Amiry-Moghaddam M, Xue R, Haug FM, Neely JD, Bhardwaj A, Agre P, Adams ME, Froehner SC, Mori S, Ottersen OP (2004) Alpha-syntrophin deletion removes the perivascular but not endothelial pool of aquaporin-4 at the blood–brain barrier and delays the development of brain edema in an experimental model of acute hyponatremia. FASEB J 18:542–544

    PubMed  CAS  Google Scholar 

  • Aoki K, Uchihara T, Tsuchiya K, Nakamura A, Ikeda K, Wakayama Y (2003) Enhanced expression of aquaporin 4 in human brain with infarction. Acta Neuropathol (Berl) 106:121–124

    Article  CAS  Google Scholar 

  • Badaut J, Petit JM, Brunet JF, Magistretti PJ, Charriaut-Marlangue C, Regli L (2004) Distribution of aquaporin 9 in the adult rat brain: preferential expression in catecholaminergic neurons and in glial cells. Neuroscience 128:27–38

    Article  PubMed  CAS  Google Scholar 

  • Bondy C, Chin E, Smith BL, Preston GM, Agre P (1993) Developmental gene expression and tissue distribution of the CHIP28 water-channel protein. Proc Natl Acad Sci USA 90:4500–4504

    Article  PubMed  CAS  Google Scholar 

  • Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40:648–677

    Article  PubMed  CAS  Google Scholar 

  • Caley DW, Maxwell DS (1970) Development of the blood vessels and extracellular spaces during postnatal maturation of rat cerebral cortex. J Comp Neurol 138:31–47

    Article  PubMed  CAS  Google Scholar 

  • Davson H, Segal MB (1996) Physiology of the CSF and blood–brain barriers. CRC, Boca Raton USA

    Google Scholar 

  • Desmond ME, Jacobson AG (1977) Embryonic brain enlargement requires cerebrospinal fluid pressure. Dev Biol 57:188–198

    Article  PubMed  CAS  Google Scholar 

  • Dziegielewska KM, Williams RT, Knott GW, Kitchener PD, Monk SE, Potter A, Saunders NR (1997) TGF-beta receptor type II and fetuin in the developing sheep neocortex. Cell Tissue Res 290:515–524

    Article  PubMed  CAS  Google Scholar 

  • Dziegielewska KM, Ek J, Habgood MD, Saunders NR (2001) Development of the choroid plexus. Microsc Res Tech 52:5–20

    Article  PubMed  CAS  Google Scholar 

  • Ek CJ, Habgood MD, Dziegielewska KM, Saunders NR (2003) Structural characteristics and barrier properties of the choroid plexuses in developing brain of the opossum (Monodelphis domestica). J Comp Neurol 460:451–464

    Article  PubMed  Google Scholar 

  • Endo M, Jain RK, Witwer B, Brown D (1999) Water channel (aquaporin 1) expression and distribution in mammary carcinomas and glioblastomas. Microvasc Res 58:89–98

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen M, Clausen PP, Jacobsen GK, Saunders NR, Møllgård K (1982) Intracellular plasma proteins in human fetal choroid plexus during development. I. Developmental stages in relation to the number of epithelial cells which contain albumin in telencephalic, diencephalic and myelencephalic choroid plexus. Brain Res 255:239–250

    PubMed  CAS  Google Scholar 

  • Jacobsen M, Møllgård K, Reynolds M, Saunders NR (1983) The choroid plexus in fetal sheep during development with special reference to intracellular plasma protein. Dev Brain Res 8:77–88

    Article  Google Scholar 

  • Jung JS, Bhat RV, Preston GM, Guggino WB, Baraban JM, Agre P (1994) Molecular characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance. Proc Natl Acad Sci USA 91:13052–13056

    Article  PubMed  CAS  Google Scholar 

  • Ke C, Poon WS, Ng HK, Pang JC, Chan Y (2001) Heterogeneous responses of aquaporin-4 in oedema formation in a replicated severe traumatic brain injury model in rats. Neurosci Lett 301:21–24

    Article  PubMed  CAS  Google Scholar 

  • Klosovskii B (ed) (1963) The development of the brain and its disturbance by harmful factors. Pergamon, London

    Google Scholar 

  • Knott GW, Dziegielewska KM, Habgood MD, Li ZS, Saunders NR (1997) Albumin transfer across the choroid plexus of South American opossum (Monodelphis domestica). J Physiol (Lond) 499:179–194

    CAS  Google Scholar 

  • Masseguin C, Corcoran M, Carcenac C, Daunton NG, Guell A, Verkman AS, Gabrion J (2000) Altered gravity downregulates aquaporin-1 protein expression in choroid plexus. J Appl Physiol 88:843–850

    PubMed  CAS  Google Scholar 

  • Milhorat TH (1976) Structure and function of the choroid plexus and other sites of cerebrospinal fluid formation. Int Rev Cytol 47:225–288

    PubMed  CAS  Google Scholar 

  • Milhorat TH, Davis DA, Lloyd BJJ (1973) Two morphologically distinct blood–brain barriers preventing entry of cytochrome c into cerebrospinal fluid. Science 180:76–78

    Article  PubMed  CAS  Google Scholar 

  • Mizuno R, Cavallaro T, Herbert J (1992) Temporal expression of the transthyretin gene in the developing rat eye. Investig Ophthalmol Vis Sci 33:341–349

    CAS  Google Scholar 

  • Mobasheri A, Marples D (2004) Expression of the AQP-1 water channel in normal human tissues: a semiquantitative study using tissue microarray technology. Am J Physiol Cell Physiol 286:C529–C537

    Article  PubMed  CAS  Google Scholar 

  • Moos T, Møllgård K (1993) Cerebrovascular permeability to azo dyes and plasma proteins in rodents of different ages. Neuropathol Appl Neurobiol 19:120–127

    PubMed  CAS  Google Scholar 

  • Møllgård K, Schumacher U (1993) Immunohistochemical assessment of cellular proliferation in the developing human CNS using formalin-fixed paraffin-embedded material. J Neurosci Methods 46:191–196

    Article  PubMed  Google Scholar 

  • Netsky M, Shuangshoti S (1975) The choroid plexus in health and disease. Wright, Bristol

    Google Scholar 

  • Nico B, Paola Nicchia G, Frigeri A, Corsi P, Mangieri D, Ribatti D, Svelto M, Roncali L (2004) Altered blood–brain barrier development in dystrophic MDX mice. Neuroscience 125:921–935

    Article  PubMed  CAS  Google Scholar 

  • Nielsen S, Smith BL, Christensen EI, Agre P (1993) Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci USA 90:7275–7279

    Article  PubMed  CAS  Google Scholar 

  • Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17:171–180

    PubMed  CAS  Google Scholar 

  • Oshio K, Song Y, Verkman AS, Manley GT (2003) Aquaporin-1 deletion reduces osmotic water permeability and cerebrospinal fluid production. Acta Neurochir Suppl (Wien) 86:525–528

    CAS  Google Scholar 

  • Praetorius J, Nejsum LN, Nielsen S (2004) A SCL4A10 gene product maps selectively to the basolateral plasma membrane of choroid plexus epithelial cells. Am J Physiol Cell Physiol 286:C601–C610

    Article  PubMed  CAS  Google Scholar 

  • Robertson PL, Du Bois M, Bowman PD, Goldstein GW (1985) Angiogenesis in developing rat brain: an in vivo and in vitro study. Brain Res 355:219–223

    PubMed  CAS  Google Scholar 

  • Saunders NR (1992) Ontogenic development of brain barrier mechanisms. In: Bradbury M (ed) Pharmacology and physiology of the blood brain–barrier, vol 103. Springer, Berlin Heidelberg New York, pp 327–369

    Google Scholar 

  • Saunders NR, Adam E, Reader M, Møllgård K (1989) Monodelphis domestica (grey short-tailed opossum): an accessible model for studies of early neocortical development. Anat Embryol (Berl) 180:227–236

    Article  CAS  Google Scholar 

  • Saunders NR, Habgood MD, Dziegielewska KM (1999) Barrier mechanisms in the brain. I. Adult brain. Clin Exp Pharmacol Physiol 26:11–19

    Article  PubMed  CAS  Google Scholar 

  • Speake T, Freeman LJ, Brown PD (2003) Expression of aquaporin 1 and aquaporin 4 water channels in rat choroid plexus. Biochim Biophys Acta 1609:80–86

    Article  PubMed  CAS  Google Scholar 

  • Sun MC, Honey CR, Berk C, Wong NL, Tsui JK (2003) Regulation of aquaporin-4 in a traumatic brain injury model in rats. J Neurosurg 98:565–569

    Article  PubMed  CAS  Google Scholar 

  • Thomas T, Power B, Hudson P, Schreiber G, Dziadek M (1988) The expression of transthyretin mRNA in the developing rat brain. Dev Biol 128:415–427

    Article  PubMed  CAS  Google Scholar 

  • Verkman AS (2002) Aquaporin water channels and endothelial cell function. J Anat 200:617–627

    Article  PubMed  CAS  Google Scholar 

  • Wen H, Nagelhus EA, Amiry-Moghaddam M, Agre P, Ottersen OP, Nielsen S (1999) Ontogeny of water transport in rat brain: postnatal expression of the aquaporin-4 water channel. Eur J Neurosci 11:935–945

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Delpire E, Hebert SC, Strange K (1998) Functional demonstration of Na+–K+–2Cl-cotransporter activity in isolated, polarized choroid plexus cells. Am J Physiol 275:C1565–C1572

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The excellent technical assistance by S. Forchhammer and K. Ottosen is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Saunders.

Additional information

This work was supported by NIH grant R01NS043949-01A1, NIH grant 5R01NS043949 and the Vera and Carl Michaelsen Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansson, P.A., Dziegielewska, K.M., Ek, C.J. et al. Aquaporin-1 in the choroid plexuses of developing mammalian brain. Cell Tissue Res 322, 353–364 (2005). https://doi.org/10.1007/s00441-005-1120-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-1120-x

Keywords

Navigation