Skip to main content

Advertisement

Log in

Neuronal 5-HT metabotropic receptors: fine-tuning of their structure, signaling, and roles in synaptic modulation

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Serotonin (5-hydroxytryptamine, 5-HT) is, without doubt, the neurotransmitter for which the number of receptors is the highest. Fifteen genes encoding functional 5-HT receptors have been cloned in mammalian brain. 5-HT3 receptors are ionotropic receptors, whereas all the others are metabotropic G-protein-coupled receptors (GPCRs). 5-HT receptor diversity is further increased by post-genomic modifications, such as alternative splicing (up to 10 splice variants for the 5-HT4 receptor) or by mRNA editing in the case of 5-HT2C receptors. The cellular and behavioral implications of 5-HT2C receptor editing are of great physiological importance. Signaling of 5-HT receptors involves a great variety of pathways, but only some of these have been demonstrated in neurons. The classical view of neurotransmitter receptors localized within the synaptic cleft cannot be applied to 5-HT receptors, which are mostly (but not exclusively) localized at extra-synaptic locations either pre- or post-synaptically. 5-HT receptors are engaged in pre- or post-synaptic complexes composed of many GPCR-interacting proteins. The functions of these proteins are starting to be revealed. These proteins have been implicated in targeting, trafficking to or from the membrane, desensitization, and fine-tuning of signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adell A, Castro E, Celada P, Bortolozzi A, Pazos A, Artigas F (2005) Strategies for producing faster acting antidepressants. Drug Discov Today 10:578–585

    PubMed  CAS  Google Scholar 

  • Aghajanian GK, Marek GJ(1999a) Serotonin, via 5-HT2A receptors, increases EPSCs in layer V pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate release. Brain Res 825:161–171

    PubMed  CAS  Google Scholar 

  • Aghajanian GK, Marek GJ(1999b) Serotonin and hallucinogens. Neuropsychopharmacology 21:16S–23S

    PubMed  CAS  Google Scholar 

  • Albert PR, Sajedi N, Lemonde S, Ghahremani MH (1999) Constitutive G(i2)-dependent activation of adenylyl cyclase type II by the 5-HT1A receptor. Inhibition by anxiolytic partial agonists. J Biol Chem 274:35469–35474

    PubMed  CAS  Google Scholar 

  • Andrade R, Chaput Y(1991) 5-Hydroxytryptamine4 receptors mediate the slow excitatory response to serotonin in the rat hippocampus. J Pharmacol Exp Ther 257:930–937

    PubMed  CAS  Google Scholar 

  • Andrade R, Malenka RC, Nicoll RA (1986) A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science 234:1261–1265

    PubMed  CAS  Google Scholar 

  • Ansanay H, Sebben M, Bockaert J, Dumuis A (1992) Characterization of homologous 5-hydroxytryptamine4 receptor desensitization in colliculi neurons. Mol Pharmacol 42:808–816

    PubMed  CAS  Google Scholar 

  • Ansanay H, Dumuis A, Sebben M, Bockaert J, Fagni L (1995) A cyclic AMP-dependent, long-lasting inhibition of a K+ current in mammalian neurons. Proc Natl Acad Sci USA 92:6635–6639

    PubMed  CAS  Google Scholar 

  • Arvanov VL, Liang X, Russo A, Wang RY (1999) LSD and DOB: interaction with 5-HT2A receptors to inhibit NMDA receptor-mediated transmission in the rat prefrontal cortex. Eur J Neurosci 11:3064–3072

    PubMed  CAS  Google Scholar 

  • Backstrom JR, Price RD, Reasoner DT, Sanders-Bush E (2000) Deletion of the serotonin 5-HT2C receptor PDZ recognition motif prevents receptor phosphorylation and delays resensitization of receptor responses. J Biol Chem 275:23620–23626

    PubMed  CAS  Google Scholar 

  • Banes AK, Shaw SM, Tawfik A, Patel BP, Ogbi S, Fulton D, Marrero MB (2005) Activation of the JAK/STAT pathway in vascular smooth muscle by serotonin. Am J Physiol Cell Physiol 288:C805–C812

    PubMed  CAS  Google Scholar 

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152

    PubMed  CAS  Google Scholar 

  • Barthet G, Gaven F, Framery B, Shinjo K, Nakamura T, Claeysen S, Bockaert J, Dumuis A (2005) Uncoupling and endocytosis of 5-hydroxytryptamine 4 receptors. Distinct molecular events with different GRK2 requirements. J Biol Chem 280:27924–27934

    PubMed  CAS  Google Scholar 

  • Becamel C, Figge A, Poliak S, Dumuis A, Peles E, Bockaert J, Lubbert H, Ullmer C (2001) Interaction of serotonin 5-hydroxytryptamine type 2C receptors with PDZ10 of the multi-PDZ domain protein MUPP1. J Biol Chem 276:12974–12982

    PubMed  CAS  Google Scholar 

  • Becamel C, Alonso G, Galeotti N, Demey E, Jouin P, Ullmer C, Dumuis A, Bockaert J, Marin P (2002) Synaptic multiprotein complexes associated with 5-HT(2C) receptors: a proteomic approach. EMBO J 21:2332–2342

    PubMed  CAS  Google Scholar 

  • Becamel C, Gavarini S, Chanrion B, Alonso G, Galeotti N, Dumuis A, Bockaert J, Marin P (2004) The serotonin 5-HT2A and 5-HT2C receptors interact with specific sets of PDZ proteins. J Biol Chem 279:20257–20266

    PubMed  CAS  Google Scholar 

  • Bender E, Pindon A, Oers I van, Zhang YB, Gommeren W, Verhasselt P, Jurzak M, Leysen J, Luyten W (2000) Structure of the human serotonin 5-HT4 receptor gene and cloning of a novel 5-HT4 splice variant. J Neurochem 74:478–489

    PubMed  CAS  Google Scholar 

  • Berg KA, Harvey JA, Spampinato U, Clarke WP (2005) Physiological relevance of constitutive activity of 5-HT2A and 5-HT2C receptors. Trends Pharmacol Sci 26:625–630

    PubMed  CAS  Google Scholar 

  • Bhatnagar A, Sheffler DJ, Kroeze WK, Compton-Toth B, Roth BL (2004) Caveolin-1 interacts with 5-HT2A serotonin receptors and profoundly modulates the signaling of selected Galphaq-coupled protein receptors. J Biol Chem 279:34614–34623

    PubMed  CAS  Google Scholar 

  • Bickmeyer U, Heine M, Manzke T, Richter DW (2002) Differential modulation of I(h) by 5-HT receptors in mouse CA1 hippocampal neurons. Eur J Neurosci 16:209–218

    PubMed  Google Scholar 

  • Bockaert J, Dumuis A (1998) Localization of 5-HT4 receptors in vertebrate brain and their potential roles. Springer, Palo Alto

    Google Scholar 

  • Bockaert J, Sebben M, Dumuis A (1990) Pharmacological characterization of 5-HT4 receptors positively coupled to adenylate cyclase in adult guinea pig hippocampal membranes: effect of substituted benzamide derivatives. Mol Pharmacol 37:408–411

    PubMed  CAS  Google Scholar 

  • Bockaert J, Fagni L, Dumuis A (1997) 5-HT4 receptors: an update. In: Baumgarten HG, Göthert M (eds) Handbook of experimental pharmacology: serotoninergic neurons and 5-HT receptors in the CNS. Springer, Berlin Heidelberg New York, pp 439–465

    Google Scholar 

  • Bockaert J, Marin P, Dumuis A, Fagni L (2003) The “magic tail” of G protein-coupled receptors: an anchorage for functional protein networks. FEBS Lett 546:65–72

    PubMed  CAS  Google Scholar 

  • Bockaert J, Claeysen S, Compan V, Dumuis A (2004a) 5-HT4 receptors. Curr Drug Targets CNS Neurol Disord 3:39–51

    PubMed  CAS  Google Scholar 

  • Bockaert J, Roussignol G, Becamel C, Gavarini S, Joubert L, Dumuis A, Fagni L, Marin P (2004b) GPCR-interacting proteins (GIPs): nature and functions. Biochem Soc Trans 32:851–855

    PubMed  CAS  Google Scholar 

  • Bockaert J, Claeysen S, Joubert L, Fagni L, Dumuis A (2005) Molecular and cellular determinants of GPCR splice variant constitutive activity. Wiley-VCH, New York

    Google Scholar 

  • Borg J, Andree B, Soderstrom H, Farde L (2003) The serotonin system and spiritual experiences. Am J Psychiatry 160:1965–1969

    PubMed  Google Scholar 

  • Bouhelal R, Smounya L, Bockaert J (1988) 5-HT1B receptors are negatively coupled with adenylate cyclase in rat substantia nigra. Eur J Pharmacol 151:189–196

    PubMed  CAS  Google Scholar 

  • Brailov I, Bancila M, Brisorgueil MJ, Miquel MC, Hamon M, Verge D (2000) Localization of 5-HT(6) receptors at the plasma membrane of neuronal cilia in the rat brain. Brain Res 872:271–275

    PubMed  CAS  Google Scholar 

  • Brattelid T, Kvingedal AM, Krobert KA, Andressen KW, Bach T, Hystad ME, Kaumann AJ, Levy FO (2004) Cloning, pharmacological characterisation and tissue distribution of a novel 5-HT4 receptor splice variant, 5-HT4(i). Naunyn-Schmiedeberg’s Arch Pharmacol 369:616–628

    CAS  Google Scholar 

  • Brezun JM, Daszuta A (1999) Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats. Neuroscience 89:999–1002

    PubMed  CAS  Google Scholar 

  • Burns CM, Chu H, Rueter SM, Hutchinson LK, Canton H, Sanders-Bush E, Emeson RB (1997) Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387:303–308

    PubMed  CAS  Google Scholar 

  • Cai X, Flores-Hernandez J, Feng J, Yan Z (2002) Activity-dependent bidirectional regulation of GABA(A) receptor channels by the 5-HT(4) receptor-mediated signalling in rat prefrontal cortical pyramidal neurons. J Physiol (Lond) 540:743–759

    CAS  Google Scholar 

  • Cardenas CG, Del Mar LP, Scroggs RS (1997) Two parallel signaling pathways couple 5HT1A receptors to N- and L-type calcium channels in C-like rat dorsal root ganglion cells. J Neurophysiol 77:3284–3296

    PubMed  CAS  Google Scholar 

  • Carr DB, Cooper DC, Ulrich SL, Spruston N, Surmeier DJ (2002) Serotonin receptor activation inhibits sodium current and dendritic excitability in prefrontal cortex via a protein kinase C-dependent mechanism. J Neurosci 22:6846–6855

    PubMed  CAS  Google Scholar 

  • Chang M, Zhang L, Tam JP, Sanders-Bush E (2000) Dissecting G protein-coupled receptor signaling pathways with membrane-permeable blocking peptides. Endogenous 5-HT(2C) receptors in choroid plexus epithelial cells. J Biol Chem 275:7021–7029

    PubMed  CAS  Google Scholar 

  • Claeysen S, Sebben M, Becamel C, Bockaert J, Dumuis A (1999) Novel brain-specific 5-HT4 receptor splice variants show marked constitutive activity: role of the C-terminal intracellular domain. Mol Pharmacol 55:910–920

    PubMed  CAS  Google Scholar 

  • Cogolludo A, Moreno L, Lodi F, Frazziano G, Cobeno L, Tamargo J, Perez-Vizcaino F (2006) Serotonin inhibits voltage-gated K+ currents in pulmonary artery smooth muscle cells. Role of 5-HT2A receptors, caveolin-1, and KV1.5 channel internalization. Circ Res (in press)

  • Collier HOJ (1958) The occurrence of 5-hydroxytryptamine (5-HT) in nature. Pergamon, New York

    Google Scholar 

  • Compan V, Zhou M, Grailhe R, Gazzara RA, Martin R, Gingrich J, Dumuis A, Brunner D, Bockaert J, Hen R (2004) Attenuated response to stress and novelty and hypersensitivity to seizures in 5-HT4 receptor knock-out mice. J Neurosci 24:412–419

    PubMed  CAS  Google Scholar 

  • Cornea-Hebert V, Riad M, Wu C, Singh SK, Descarries L (1999) Cellular and subcellular distribution of the serotonin 5-HT2A receptor in the central nervous system of adult rat. J Comp Neurol 409:187–209

    PubMed  CAS  Google Scholar 

  • Cornea-Hebert V, Watkins KC, Roth BL, Kroeze WK, Gaudreau P, Leclerc N, Descarries L (2002) Similar ultrastructural distribution of the 5-HT(2A) serotonin receptor and microtubule-associated protein MAP1A in cortical dendrites of adult rat. Neuroscience 113:23–35

    PubMed  CAS  Google Scholar 

  • Day M, Olson PA, Platzer J, Striessnig J, Surmeier DJ (2002) Stimulation of 5-HT(2) receptors in prefrontal pyramidal neurons inhibits Ca(v)1.2 L type Ca(2+) currents via a PLCbeta/IP3/calcineurin signaling cascade. J Neurophysiol 87:2490–2504

    PubMed  CAS  Google Scholar 

  • De Deurwaerdere P, Navailles S, Berg KA, Clarke WP, Spampinato U (2004) Constitutive activity of the serotonin2C receptor inhibits in vivo dopamine release in the rat striatum and nucleus accumbens. J Neurosci 24:3235–3241

    PubMed  Google Scholar 

  • De Vivo M, Maayani S (1986) Characterization of the 5-hydroxytryptamine1A receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in guinea pig and rat hippocampal membranes. J Pharmacol Exp Ther 238:248–253

    PubMed  Google Scholar 

  • Della Rocca GJ, Mukhin YV, Garnovskaya MN, Daaka Y, Clark GJ, Luttrell LM, Lefkowitz RJ, Raymond JR (1999) Serotonin 5-HT1A receptor-mediated Erk activation requires calcium/calmodulin-dependent receptor endocytosis. J Biol Chem 274:4749–4753

    PubMed  CAS  Google Scholar 

  • Descarries L, Beaudet A, Watkins KC (1975) Serotonin nerve terminals in adult rat neocortex. Brain Res 100:563–588

    PubMed  CAS  Google Scholar 

  • Di Matteo V, De Blasi A, Di Giulio C, Esposito E (2001) Role of 5-HT(2C) receptors in the control of central dopamine function. Trends Pharmacol Sci 22:229–232

    PubMed  Google Scholar 

  • Dumuis A, Bouhelal R, Sebben M, Cory R, Bockaert J (1988) A nonclassical 5-hydroxytryptamine receptor positively coupled with adenylate cyclase in the central nervous system. Mol Pharmacol 34:880–887

    PubMed  CAS  Google Scholar 

  • Edagawa Y, Saito H, Abe K (1998) 5-HT1A receptor-mediated inhibition of long-term potentiation in rat visual cortex. Eur J Pharmacol 349:221–224

    PubMed  CAS  Google Scholar 

  • Egan CT, Herrick-Davis K, Teitler M (1998) Creation of a constitutively activated state of the 5-hydroxytryptamine2A receptor by site-directed mutagenesis: inverse agonist activity of antipsychotic drugs. J Pharmacol Exp Ther 286:85–90

    PubMed  CAS  Google Scholar 

  • Erspamer V, Asero B (1952) Identification of enteramine, the specific hormone of the enterochromaffin cell system, as 5-hydroxytryptamine. Nature 169:800–801

    PubMed  CAS  Google Scholar 

  • Fabre V, Beaufour C, Evrard A, Rioux A, Hanoun N, Lesch KP, Murphy DL, Lanfumey L, Hamon M, Martres MP (2000) Altered expression and functions of serotonin 5-HT1A and 5-HT1B receptors in knock-out mice lacking the 5-HT transporter. Eur J Neurosci 12:2299–2310

    PubMed  CAS  Google Scholar 

  • Fagni L, Dumuis A, Sebben M, Bockaert J (1992) The 5-HT4 receptor subtype inhibits K+ current in colliculi neurons via activation of a cyclic AMP-dependent protein kinase. Br J Pharmacol 105:973–979

    PubMed  CAS  Google Scholar 

  • Fitzgerald LW, Iyer G, Conklin DS, Krause CM, Marshall A, Patterson JP, Tran DP, Jonak GJ, Hartig PR (1999) Messenger RNA editing of the human serotonin 5-HT2C receptor. Neuropsychopharmacology 21:82S–90S

    PubMed  CAS  Google Scholar 

  • Gaspar P, Cases O, Maroteaux L (2003) The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci 4:1002–1012

    PubMed  CAS  Google Scholar 

  • Gerard C, Martres MP, Lefevre K, Miquel MC, Verge D, Lanfumey L, Doucet E, Hamon M, Mestikawy S el (1997) Immuno-localization of serotonin 5-HT6 receptor-like material in the rat central nervous system. Brain Res 746:207–219

    PubMed  CAS  Google Scholar 

  • Gingrich JA, Hen R (2001) Dissecting the role of the serotonin system in neuropsychiatric disorders using knockout mice. Psychopharmacology (Berl) 155:1–10

    CAS  Google Scholar 

  • Goaillard JM, Vincent P (2002) Serotonin suppresses the slow afterhyperpolarization in rat intralaminar and midline thalamic neurones by activating 5-HT(7) receptors. J Physiol (Lond) 541:453–465

    CAS  Google Scholar 

  • Gobert A, Rivet JM, Lejeune F, Newman-Tancredi A, Adhumeau-Auclair A, Nicolas JP, Cistarelli L, Melon C, Millan MJ (2000) Serotonin(2C) receptors tonically suppress the activity of mesocortical dopaminergic and adrenergic, but not serotonergic, pathways: a combined dialysis and electrophysiological analysis in the rat. Synapse 36:205–221

    PubMed  CAS  Google Scholar 

  • Gross C, Hen R (2004) The developmental origins of anxiety. Nat Rev Neurosci 5:545–552

    PubMed  CAS  Google Scholar 

  • Guillet-Deniau I, Burnol AF, Girard J (1997) Identification and localization of a skeletal muscle secrotonin 5-HT2A receptor coupled to the Jak/STAT pathway. J Biol Chem 272:14825–14829

    PubMed  CAS  Google Scholar 

  • Gurevich I, Englander MT, Adlersberg M, Siegal NB, Schmauss C (2002a) Modulation of serotonin 2C receptor editing by sustained changes in serotonergic neurotransmission. J Neurosci 22:10529–10532

    PubMed  CAS  Google Scholar 

  • Gurevich I, Tamir H, Arango V, Dwork AJ, Mann JJ, Schmauss C (2002b) Altered editing of serotonin 2C receptor pre-mRNA in the prefrontal cortex of depressed suicide victims. Neuron 34:349–356

    PubMed  CAS  Google Scholar 

  • Harvey JA (2003) Role of the serotonin 5-HT(2A) receptor in learning. Learn Mem 10:355–362

    PubMed  Google Scholar 

  • Hedlund PB, Sutcliffe JG (2004) Functional, molecular and pharmacological advances in 5-HT7 receptor research. Trends Pharmacol Sci 25:481–486

    PubMed  CAS  Google Scholar 

  • Heidmann DE, Metcalf MA, Kohen R, Hamblin MW (1997) Four 5-hydroxytryptamine7 (5-HT7) receptor isoforms in human and rat produced by alternative splicing: species differences due to altered intron-exon organization. J Neurochem 68:1372–1381

    Article  PubMed  CAS  Google Scholar 

  • Higuchi M, Single FN, Kohler M, Sommer B, Sprengel R, Seeburg PH (1993) RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency. Cell 75:1361–1370

    PubMed  CAS  Google Scholar 

  • Hiroi T, Hayashi-Kobayashi N, Nagumo S, Ino M, Okawa Y, Aoba A, Matsui H (2001) Identification and characterization of the human serotonin-4 receptor gene promoter. Biochem Biophys Res Commun 289:337–344

    PubMed  CAS  Google Scholar 

  • Hori Y, Endo K, Takahashi T (1996) Long-lasting synaptic facilitation induced by serotonin in superficial dorsal horn neurones of the rat spinal cord. J Physiol (Lond) 492:867–876

    CAS  Google Scholar 

  • Hoyer D, Martin G (1997) 5-HT receptor classification and nomenclature: towards a harmonization with human genome. Neuropharmacology, 36:419–428

    PubMed  CAS  Google Scholar 

  • Inagaki N, Chihara K, Arimura N, Menager C, Kawano Y, Matsuo N, Nishimura T, Amano M, Kaibuchi K (2001) CRMP-2 induces axons in cultured hippocampal neurons. Nat Neurosci 4:781–782

    PubMed  CAS  Google Scholar 

  • Jakab RL, Goldman-Rakic PS (1998) 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci USA 95:735–740

    PubMed  CAS  Google Scholar 

  • Ji SP, Zhang Y, Van Cleemput J, Jiang W, Liao M, Li L, Wan Q, Backstrom JR, Zhang X (2006) Disruption of PTEN coupling with 5-HT2C receptors suppresses behavioral responses induced by drugs of abuse. Nat Med 12:324–329

    PubMed  CAS  Google Scholar 

  • Johnson MS, Robertson DN, Holland PJ, Lutz EM, Mitchell R (2006) Role of the conserved NPxxY motif of the 5-HT(2A) receptor in determining selective interaction with isoforms of ADP-Ribosylation Factor (ARF). Cell Signal (in press)

  • Joubert L, Hanson B, Barthet G, Sebben M, Claeysen S, Hong W, Marin P, Dumuis A, Bockaert J (2004) New sorting nexin (SNX27) and NHERF specifically interact with the 5-HT4a receptor splice variant: roles in receptor targeting. J Cell Sci 117:5367–5379

    PubMed  CAS  Google Scholar 

  • Kajii Y, Muraoka S, Hiraoka S, Fujiyama K, Umino A, Nishikawa T (2003) A developmentally regulated and psychostimulant-inducible novel rat gene mrt1 encoding PDZ-PX proteins isolated in the neocortex. Mol Psychiatry 8:434–444

    PubMed  CAS  Google Scholar 

  • Karschin A, Ho BY, Labarca C, Elroy-Stein O, Moss B, Davidson N, Lester HA (1991) Heterologously expressed serotonin 1A receptors couple to muscarinic K+ channels in heart. Proc Natl Acad Sci USA 88:5694–5698

    PubMed  CAS  Google Scholar 

  • Kemp A, Manahan-Vaughan D (2004) Hippocampal long-term depression and long-term potentiation encode different aspects of novelty acquisition. Proc Natl Acad Sci USA 101:8192–8197

    PubMed  CAS  Google Scholar 

  • Kemp A, Manahan-Vaughan D (2005) The 5-hydroxytryptamine4 receptor exhibits frequency-dependent properties in synaptic plasticity and behavioural metaplasticity in the hippocampal CA1 region in vivo. Cereb Cortex 15:1037–1043

    PubMed  Google Scholar 

  • Kiel S, Bruss M, Bonisch H, Gothert M (2000) Pharmacological properties of the naturally occurring Phe-124-Cys variant of the human 5-HT1B receptor: changes in ligand binding, G-protein coupling and second messenger formation. Pharmacogenetics 10:655–666

    PubMed  CAS  Google Scholar 

  • Kilbinger H, Wolf D (1992) Effects of 5-HT4 receptor stimulation on basal and electrically evoked release of acetylcholine from guinea-pig myenteric plexus. Naunyn Schmiedebergs Arch Pharmacol 345:270–275

    CAS  Google Scholar 

  • Kilbinger H, Gebauer A, Haas J, Ladinsky H, Rizzi CA (1995) Benzimidazolones and renzapride facilitate acetylcholine release from guinea-pig myenteric plexus via 5-HT4 receptors. Naunyn Schmiedebergs Arch Pharmacol 351:229–236

    CAS  Google Scholar 

  • Kishore S, Stamm S (2006) The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science 311:230–232

    PubMed  CAS  Google Scholar 

  • Kroeze WK, Roth BL (1998) The molecular biology of serotonin receptors: therapeutic implications for the interface of mood and psychosis. Biol Psychiatry 44:1128–1142

    PubMed  CAS  Google Scholar 

  • Kvachnina E, Liu G, Dityatev A, Renner U, Dumuis A, Richter DW, Dityateva G, Schachner M, Voyno-Yasenetskaya TA, Ponimaskin EG (2005) 5-HT7 receptor is coupled to Galpha subunits of heterotrimeric G12-protein to regulate gene transcription and neuronal morphology. J Neurosci 25:7821–7830

    PubMed  CAS  Google Scholar 

  • Lanfumey L, Hamon M (2004) 5-HT1 receptors. Curr Drug Targets CNS Neurol Disord 3:1–10

    PubMed  CAS  Google Scholar 

  • Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by beta-arrestins. Science 308:512–517

    PubMed  CAS  Google Scholar 

  • Leysen JE (2004) 5-HT2 receptors. Curr Drug Targets CNS Neurol Disord 3:11–26

    PubMed  CAS  Google Scholar 

  • Lezoualc’h F, Robert SJ (2003) The serotonin 5-HT4 receptor and the amyloid precursor protein processing. Exp Gerontol 38:159–166

    PubMed  CAS  Google Scholar 

  • Li P, Zhuo M (1998) Silent glutamatergic synapses and nociception in mammalian spinal cord. Nature 393:695–698

    PubMed  CAS  Google Scholar 

  • Li P, Kerchner GA, Sala C, Wei F, Huettner JE, Sheng M, Zhuo M (1999) AMPA receptor-PDZ interactions in facilitation of spinal sensory synapses. Nat Neurosci 2:972–977

    PubMed  CAS  Google Scholar 

  • Lin SL, Johnson-Farley NN, Lubinsky DR, Cowen DS (2003) Coupling of neuronal 5-HT7 receptors to activation of extracellular-regulated kinase through a protein kinase A-independent pathway that can utilize Epac. J Neurochem 87:1076–1085

    PubMed  CAS  Google Scholar 

  • Liu M, Geddis MS, Wen Y, Setlik W, Gershon MD (2005) Expression and function of 5-HT4 receptors in the mouse enteric nervous system. Am J Physiol Gastrointest Liver Physiol 289:G1148–G1163

    PubMed  CAS  Google Scholar 

  • Lopez-Gimenez JF, Mengod G, Palacios JM, Vilaro MT (2001) Regional distribution and cellular localization of 5-HT2C receptor mRNA in monkey brain: comparison with [3H]mesulergine binding sites and choline acetyltransferase mRNA. Synapse 42:12–26

    PubMed  CAS  Google Scholar 

  • Lucas G, Debonnel G (2002) 5-HT4 receptors exert a frequency-related facilitatory control on dorsal raphe nucleus 5-HT neuronal activity. Eur J Neurosci 16:817–822

    PubMed  Google Scholar 

  • Lucas G, Compan V, Charnay Y, Neve RL, Nestler EJ, Bockaert J, Barrot M, Debonnel G (2005) Frontocortical 5-HT4 receptors exert positive feedback on serotonergic activity: viral transfections, subacute and chronic treatments with 5-HT4 agonists. Biol Psychiatry 57:918–925

    PubMed  CAS  Google Scholar 

  • Manivet P, Mouillet-Richard S, Callebert J, Nebigil CG, Maroteaux L, Hosoda S, Kellermann O, Launay JM (2000) PDZ-dependent activation of nitric-oxide synthases by the serotonin 2B receptor. J Biol Chem 275:9324–9331

    PubMed  CAS  Google Scholar 

  • Manzke T, Guenther U, Ponimaskin EG, Haller M, Dutschmann M, Schwarzacher S, Richter DW (2003) 5-HT4(a) receptors avert opioid-induced breathing depression without loss of analgesia. Science 301:226–229

    PubMed  CAS  Google Scholar 

  • Marek GJ, Aghajanian GK (1999) 5-HT2A receptor or alpha1-adrenoceptor activation induces excitatory postsynaptic currents in layer V pyramidal cells of the medial prefrontal cortex. Eur J Pharmacol 367:197–206

    PubMed  CAS  Google Scholar 

  • Marek GJ, Wright RA, Schoepp DD, Monn JA, Aghajanian GK (2000) Physiological antagonism between 5-hydroxytryptamine(2A) and group II metabotropic glutamate receptors in prefrontal cortex. J Pharmacol Exp Ther 292:76–87

    PubMed  CAS  Google Scholar 

  • Matsumoto M, Kojima T, Togashi H, Mori K, Ohashi S, Ueno K, Yoshioka M (2002) Differential characteristics of endogenous serotonin-mediated synaptic transmission in the hippocampal CA1 and CA3 fields of anaesthetized rats. Naunyn-Schmiedeberg’s Arch Pharmacol 366:570–577

    CAS  Google Scholar 

  • McGrew L, Chang MS, Sanders-Bush E (2002) Phospholipase D activation by endogenous 5-hydroxytryptamine 2C receptors is mediated by Galpha13 and pertussis toxin-insensitive Gbetagamma subunits. Mol Pharmacol 62:1339–1343

    PubMed  CAS  Google Scholar 

  • McGrew L, Price RD, Hackler E, Chang MS, Sanders-Bush E (2004) RNA editing of the human serotonin 5-HT2C receptor disrupts transactivation of the small G-protein RhoA. Mol Pharmacol 65:252–256

    PubMed  CAS  Google Scholar 

  • Miller KJ (2005) Serotonin 5-ht2c receptor agonists: potential for the treatment of obesity. Mol Interv 5:282–291

    PubMed  CAS  Google Scholar 

  • Miner LA, Backstrom JR, Sanders-Bush E, Sesack SR (2003) Ultrastructural localization of serotonin2A receptors in the middle layers of the rat prelimbic prefrontal cortex. Neuroscience 116:107–117

    PubMed  CAS  Google Scholar 

  • Nelson DL (2004) 5-HT5 receptors. Curr Drug Targets CNS Neurol Disord 3:53–58

    PubMed  CAS  Google Scholar 

  • Niesler B, Frank B, Kapeller J, Rappold GA (2003) Cloning, physical mapping and expression analysis of the human 5-HT3 serotonin receptor-like genes HTR3C, HTR3D and HTR3E. Gene 310:101–111

    PubMed  CAS  Google Scholar 

  • Niswender CM, Copeland SC, Herrick-Davis K, Emeson RB, Sanders-Bush E (1999) RNA editing of the human serotonin 5-hydroxytryptamine 2C receptor silences constitutive activity. J Biol Chem 274:9472–9478

    PubMed  CAS  Google Scholar 

  • Noda M, Yasuda S, Okada M, Higashida H, Shimada A, Iwata N, Ozaki N, Nishikawa K, Shirasawa S, Uchida M, Aoki S, Wada K (2003) Recombinant human serotonin 5A receptors stably expressed in C6 glioma cells couple to multiple signal transduction pathways. J Neurochem 84:222–232

    PubMed  CAS  Google Scholar 

  • Norum JH, Hart K, Levy FO (2003) Ras-dependent ERK activation by the human G(s)-coupled serotonin receptors 5-HT4(b) and 5-HT7(a). J Biol Chem 278:3098–3104

    PubMed  CAS  Google Scholar 

  • Nourry C, Grant SG, Borg JP (2003) PDZ domain proteins: plug and play! Sci STKE 2003:RE7

    Google Scholar 

  • Oleskevich S (1995) G alpha o1 decapeptide modulates the hippocampal 5-HT1A potassium current. J Neurophysiol 74:2189–2193

    PubMed  CAS  Google Scholar 

  • Olsen MA, Nawoschik SP, Schurman BR, Schmitt HL, Burno M, Smith DL, Schechter LE (1999) Identification of a human 5-HT6 receptor variant produced by alternative splicing. Brain Res Mol Brain Res 64:255–263

    PubMed  CAS  Google Scholar 

  • Parker LL, Backstrom JR, Sanders-Bush E, Shieh BH (2003) Agonist-induced phosphorylation of the serotonin 5-HT2C receptor regulates its interaction with multiple PDZ protein 1. J Biol Chem 278:21576–21583

    PubMed  CAS  Google Scholar 

  • Pauwels PJ (1997) 5-HT 1B/D receptor antagonists. Gen Pharmacol 29:293–303

    PubMed  CAS  Google Scholar 

  • Pehek EA, McFarlane HG, Maguschak K, Price B, Pluto CP (2001) M100,907, a selective 5-HT(2A) antagonist, attenuates dopamine release in the rat medial prefrontal cortex. Brain Res 888:51–59

    PubMed  CAS  Google Scholar 

  • Ponimaskin EG, Profirovic J, Vaiskunaite R, Richter DW, Voyno-Yasenetskaya TA (2002) 5-Hydroxytryptamine 4(a) receptor is coupled to the Galpha subunit of heterotrimeric G13 protein. J Biol Chem 277:20812–20819

    PubMed  CAS  Google Scholar 

  • Price RD, Weiner DM, Chang MS, Sanders-Bush E (2001) RNA editing of the human serotonin 5-HT2C receptor alters receptor-mediated activation of G13 protein. J Biol Chem 276:44663–44668

    PubMed  CAS  Google Scholar 

  • Rapport MM, Green AA, Page IH (1948) Serum vasoconstrictor (serotonin). IV. Isolation and characterization. J Biol Chem 176:1243–1251

    PubMed  CAS  Google Scholar 

  • Raymond JR, Mukhin YV, Gelasco A, Turner J, Collinsworth G, Gettys TW, Grewal JS, Garnovskaya MN (2001) Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmacol Ther 92:179–212

    PubMed  CAS  Google Scholar 

  • Rees S, Daas I den, Foord S, Goodson S, Bull D, Kilpatrick G, Lee M (1994) Cloning and characterisation of the human 5-HT5A serotonin receptor. FEBS Lett 355:242–246

    PubMed  CAS  Google Scholar 

  • Riad M, Garcia S, Watkins KC, Jodoin N, Doucet E, Langlois X, el Mestikawy S, Hamon M, Descarries L (2000) Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain. J Comp Neurol 417:181–194

    PubMed  CAS  Google Scholar 

  • Robertson DN, Johnson MS, Moggach LO, Holland PJ, Lutz EM, Mitchell R (2003) Selective interaction of ARF1 with the carboxy-terminal tail domain of the 5-HT2A receptor. Mol Pharmacol 64:1239–1250

    PubMed  CAS  Google Scholar 

  • Roth BL, Ciaranello RD (1991) Chronic mianserin treatment decreases 5-HT2 receptor binding without altering 5-HT2 receptor mRNA levels. Eur J Pharmacol 207:169–172

    PubMed  CAS  Google Scholar 

  • Ruat M, Traiffort E, Arrang JM, Tardivel-Lacombe J, Diaz J, Leurs R, Schwartz JC (1993) A novel rat serotonin (5-HT6) receptor: molecular cloning, localization and stimulation of cAMP accumulation. Biochem Biophys Res Commun 193:268–276

    PubMed  CAS  Google Scholar 

  • Sanden N, Thorlin T, Blomstrand F, Persson PA, Hansson E (2000) 5-Hydroxytryptamine2B receptors stimulate Ca2+ increases in cultured astrocytes from three different brain regions. Neurochem Int 36:427–434

    PubMed  CAS  Google Scholar 

  • Sanders-Bush E (1990) Adaptive regulation of central serotonin receptors linked to phosphoinositide hydrolysis. Neuropsychopharmacology 3:411–416

    PubMed  CAS  Google Scholar 

  • Sanders-Bush E, Breeding M (1988) Putative selective 5-HT-2 antagonists block serotonin 5-HT-1c receptors in the choroid plexus. J Pharmacol Exp Ther 247:169–173

    PubMed  CAS  Google Scholar 

  • Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809

    PubMed  CAS  Google Scholar 

  • Sari Y, Lefevre K, Bancila M, Quignon M, Miquel MC, Langlois X, Hamon M, Verge D (1997) Light and electron microscopic immunocytochemical visualization of 5-HT1B receptors in the rat brain. Brain Res 760:281–286

    PubMed  CAS  Google Scholar 

  • Schlag BD, Lou Z, Fennell M, Dunlop J (2004) Ligand dependency of 5-hydroxytryptamine 2C receptor internalization. J Pharmacol Exp Ther 310:865–870

    PubMed  CAS  Google Scholar 

  • Schoeffter P, Waeber C (1994) 5-Hydroxytryptamine receptors with a 5-HT6 receptor-like profile stimulating adenylyl cyclase activity in pig caudate membranes. Naunyn-Schmiedeberg’s Arch Pharmacol 350:356–360

    CAS  Google Scholar 

  • Sebben M, Ansanay H, Bockaert J, Dumuis A (1994) 5-HT6 receptors positively coupled to adenylyl cyclase in striatal neurones in culture. Neuroreport 5:2553–2557

    PubMed  CAS  Google Scholar 

  • Sheffler DJ, Kroeze WK, Garcia BG, Deutch AY, Hufeisen SJ, Leahy P, Bruning JC, Roth BL (2006) p90 ribosomal S6 kinase 2 exerts a tonic brake on G protein-coupled receptor signaling. Proc Natl Acad Sci USA 103:4717–4722

    PubMed  CAS  Google Scholar 

  • Sodickson DL, Bean BP (1998) Neurotransmitter activation of inwardly rectifying potassium current in dissociated hippocampal CA3 neurons: interactions among multiple receptors. J Neurosci 18:8153–8162

    PubMed  CAS  Google Scholar 

  • Sotelo C, Cholley B, El Mestikawy S, Gozlan H, Hamon M (1990) Direct immunohistochemical evidence of the existence of 5-HT1A autoreceptors on serotoninergic neurons in the midbrain raphe nuclei. Eur J Neurosci 2:1144–1154

    PubMed  Google Scholar 

  • Starke K, Gothert M, Kilbinger H (1989) Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol Rev 69:864–989

    PubMed  CAS  Google Scholar 

  • Svenningsson P, Chergui K, Rachleff I, Flajolet M, Zhang X, Yacoubi ME, Vaugeois JM, Nomikos GG, Greengard P (2006) Alterations in 5-HT1B receptor function by p11 in depression-like states. Science 311:77–80

    PubMed  CAS  Google Scholar 

  • Thomas DR, Hagan JJ (2004) 5-HT7 receptors. Curr Drug Targets CNS Neurol Disord 3:81–90

    PubMed  CAS  Google Scholar 

  • Torres GE, Arfken CL, Andrade R (1996) 5-Hydroxytryptamine4 receptors reduce after-hyperpolarization in hippocampus by inhibiting calcium-induced calcium release. Mol Pharmacol 50:1316–1322

    PubMed  CAS  Google Scholar 

  • Turner JH, Raymond JR (2005) Interaction of calmodulin with the serotonin 5-hydroxytryptamine2A receptor. A putative regulator of G protein coupling and receptor phosphorylation by protein kinase C. J Biol Chem 280:30741–30750

    PubMed  CAS  Google Scholar 

  • Turner JH, Gelasco AK, Raymond JR (2004) Calmodulin interacts with the third intracellular loop of the serotonin 5-hydroxytryptamine1A receptor at two distinct sites: putative role in receptor phosphorylation by protein kinase C. J Biol Chem 279:17027–17037

    PubMed  CAS  Google Scholar 

  • Ullmer C, Schmuck K, Figge A, Lubbert H (1998) Cloning and characterization of MUPP1, a novel PDZ domain protein. FEBS Lett 424:63–68

    PubMed  CAS  Google Scholar 

  • Van Hooft JA, Yakel JL (2003) 5-HT3 receptors in the CNS: 3B or not 3B? Trends Pharmacol Sci 24:157–160

    PubMed  Google Scholar 

  • Van Oekelen D, Luyten WH, Leysen JE (2003) 5-HT2A and 5-HT2C receptors and their atypical regulation properties. Life Sci 72:2429–2449

    PubMed  Google Scholar 

  • Villalobos C, Beique JC, Gingrich JA, Andrade R (2005) Serotonergic regulation of calcium-activated potassium currents in rodent prefrontal cortex. Eur J Neurosci 22:1120–1126

    PubMed  Google Scholar 

  • Wainscott DB, Cohen ML, Schenck KW, Audia JE, Nissen JS, Baez M, Kursar JD, Lucaites VL, Nelson DL (1993) Pharmacological characteristics of the newly cloned rat 5-hydroxytryptamine2F receptor. Mol Pharmacol 43:419–426

    PubMed  CAS  Google Scholar 

  • Weiss S, Pin J-P, Sebben M, Kemp D, Sladeczek F, Gabrion J, Bockaert J (1986) Synaptogenesis of cultured striatal neurones in serum-free medium: a morphological and biochemical study. Proc Natl Acad Sci USA 83:2238–2242

    PubMed  CAS  Google Scholar 

  • Williams GV, Rao SG, Goldman-Rakic PS (2002) The physiological role of 5-HT2A receptors in working memory. J Neurosci 22:2843–2854

    PubMed  CAS  Google Scholar 

  • Willins DL, Berry SA, Alsayegh L, Backstrom JR, Sanders-Bush E, Friedman L, Roth BL (1999) Clozapine and other 5-hydroxytryptamine-2A receptor antagonists alter the subcellular distribution of 5-hydroxytryptamine-2A receptors in vitro and in vivo. Neuroscience 91:599–606

    PubMed  CAS  Google Scholar 

  • Woolley ML, Marsden CA, Fone KC (2004) 5-HT6 receptors. Curr Drug Targets CNS Neurol Disord 3:59–79

    PubMed  CAS  Google Scholar 

  • Xia Z, Gray JA, Compton-Toth BA, Roth BL (2003a) A direct interaction of PSD95 with 5-HT2A serotonin receptors regulates receptor trafficking and signal transduction. J Biol Chem 278:21901–21908

    PubMed  CAS  Google Scholar 

  • Xia Z, Hufeisen SJ, Gray JA, Roth BL (2003b) The PDZ-binding domain is essential for the dendritic targeting of 5-HT2A serotonin receptors in cortical pyramidal neurons in vitro. Neuroscience 122:907–920

    PubMed  CAS  Google Scholar 

  • Xie E, Zhu L, Zhao L, Chang LS (1996) The human serotonin 5-HT2C receptor: complete cDNA, genomic structure, and alternatively spliced variant. Genomics 35:551–561

    PubMed  CAS  Google Scholar 

  • Yan W, Wilson CC, Haring JH (1997) 5-HT1a receptors mediate the neurotrophic effect of serotonin on developing dentate granule cells. Brain Res Dev Brain Res 98:185–190

    PubMed  CAS  Google Scholar 

  • Yuen EY, Jiang Q, Chen P, Gu Z, Feng J, Yan Z (2005) Serotonin 5-HT1A receptors regulate NMDA receptor channels through a microtubule-dependent mechanism. J Neurosci 25:5488–5501

    PubMed  CAS  Google Scholar 

  • Zhou FM, Hablitz JJ (1999) Activation of serotonin receptors modulates synaptic transmission in rat cerebral cortex. J Neurophysiol 82:2989–2999

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joël Bockaert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bockaert, J., Claeysen, S., Bécamel, C. et al. Neuronal 5-HT metabotropic receptors: fine-tuning of their structure, signaling, and roles in synaptic modulation. Cell Tissue Res 326, 553–572 (2006). https://doi.org/10.1007/s00441-006-0286-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0286-1

Keywords

Navigation