Skip to main content

Advertisement

Log in

Actin filament organization of foot processes in vertebrate glomerular podocytes

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

We investigated the actin filament organization and immunolocalization of actin-binding proteins (α-actinin and cortactin) in the podocyte foot processes of eight vertebrate species (lamprey, carp, newt, frog, gecko, turtle, quail, and rat). Three types of actin cytoskeleton were found in these foot processes. (1) A cortical actin network with cortactin filling the space between the plasma membrane and the other actin cytoskeletons described below was found in all of the species examined here. The data indicated that the cortical actin network was the minimal essential actin cytoskeleton for the formation and maintenance of the foot processes in vertebrate podocytes. (2) An actin bundle with α-actinin existing along the longitudinal axis of foot process above the level of slit diaphragms was only observed in quail and rat. (3) An actin fascicle consisting of much fewer numbers of actin filaments than that of the actin bundle was observed in the species other than quail and rat, but at various frequencies. These findings suggest that the actin bundle is an additional actin cytoskeleton reflecting a functional state peculiar to quail and rat glomeruli. Considering the higher intraglomerular pressure and the extremely thin filtration barrier in birds and mammals, the foot processes probably mainly protect the thinner filtration barrier from the higher internal pressure occurring in quail and rat glomeruli. Therefore, we consider that the actin bundle plays a crucial role in the mechanical protection of the filtration barrier. Moreover, the actin fascicle may be a potential precursor of the actin bundle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andrews PM, Bates SB (1984) Filamentous actin bundles in the kidney. Anat Rec 210:1–219

    Article  PubMed  CAS  Google Scholar 

  • Braun EJ, Dantzler WH (1997) Vertebrate renal system. In: Dantzler WH (ed) Handbook of Physiology, section 13. Comparative physiology, 1st edn. Oxford University Press, Oxford

    Google Scholar 

  • Corgan AM, Singleton C, Santoso CB, Greenwood JA (2004) Phosphoinositides differentially regulate α-actinin flexibility and function. Biochem J 378:1067–1072

    Article  PubMed  CAS  Google Scholar 

  • Critchley D, Flood G (1998) α-Actinins. In: Kreis T, Vale R (ed) Guidebook to the cytoskeletal and motor proteins, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Davis LE, Schmidt-Nielsen B, Stolte H (1976) Anatomy and ultrastructure of the excretory system of the lizard, Sceloporus cyanogenys. J Morphol 149:279–326

    Article  PubMed  CAS  Google Scholar 

  • Drenckhahn D, Franke RP (1988) Ultrastructural organization of contractile and cytoskeletal proteins in glomerular podocytes of chicken, rat, and man. Lab Invest 59:673–682

    PubMed  CAS  Google Scholar 

  • Harris RC, Haralson MA, Badr KF (1992) Continuous stretch-relaxation in culture alters rat mesangial cell morphology, growth characteristics, and metabolic activity. Lab Invest 66:548–554

    PubMed  CAS  Google Scholar 

  • Heath-Eves M, McMillan D (1974) The morphology of the kidney of the Atlantic hagfish, Myxine glutinosa (L.). Am J Anat 139:309–334

    Article  Google Scholar 

  • Ichimura K, Kurihara H, Sakai T (2003) Actin filament organization of foot processes in rat podocytes. J Histochem Cytochem 51:1589–1600

    PubMed  CAS  Google Scholar 

  • Kerjaschki D (2001) Caught flat-footed: podocyte damage and the molecular bases of focal glomerulosclerosis. J Clin Invest 108:1583–1587

    Article  PubMed  CAS  Google Scholar 

  • Kerjaschki D, Sharkey DJ, Farquhar MG (1984) Identification and characterization of podocalyxin—the major sialoprotein of the renal glomerular epithelial cell. J Cell Biol 98:1591–1596

    Article  PubMed  CAS  Google Scholar 

  • Kriz W, Hackenthal E, Nobiling R, Sakai T, Elger M, Hahnel B (1994) A role for podocytes to counteract capillary wall distension. Kidney Int 45:369–376

    Article  PubMed  CAS  Google Scholar 

  • Kurihara H, Anderson JM, Farquhar MG (1992) Diversity among tight junctions in rat kidney: glomerular slit diaphragms and endothelial junctions express only one isoform of the tight junction protein ZO-1. Proc Natl Acad Sci USA 89:7075–7079

    Article  PubMed  CAS  Google Scholar 

  • Kurihara H, Anderson JM, Farquhar MG (1995) Increased Tyr phosphorylation of ZO-1 during modification of tight junctions between glomerular foot processes. Am J Physiol 268:F514–F524

    PubMed  CAS  Google Scholar 

  • Lacy ER, Castellucci M, Reale E (1987) The elasmobranch renal corpuscle: fine structure of Bowman’s capsule and the glomerular capillary wall. Anat Rec 218:294–305

    Article  PubMed  CAS  Google Scholar 

  • Meazzini MC, Toma CD, Schaffer JL, Gray ML, Gerstenfeld LC (1998) Osteoblast cytoskeletal modulation in response to mechanical strain in vitro. J Orthop Res 16:170–180

    Article  PubMed  CAS  Google Scholar 

  • Meseguer J, Garcia Ayala A, Agulleiro B (1987) Ultrastructure of the nephron of freshwater turtles, Pseudemys scripta elegans and Mauremys caspica. Cell Tissue Res 248:381–391

    Article  PubMed  CAS  Google Scholar 

  • Møbjerg N, Jespersen Å, Wilkinson M (2004) Morphology of the kidney in the West African caecilian, Geotrypetes seraphini (Amphibia, Gymnophiona, Caeciliidae). J Morphol 262:583–607

    Article  PubMed  Google Scholar 

  • Ojéda JL, Icardo JM, Wong WP, Ip YK (2006) Microanatomy and ultrastructure of the kidney of the African lungfish Protopterus dolloi. Anat Rec 288A:609–625

    Article  Google Scholar 

  • Ruppert E, Smith P (1988) The functional organization of filtration nephridia. Biol Rev 63:231–258

    Google Scholar 

  • Ruppert E, Fox R, Barnes R (2003) Invertebrate zoology, 7th edn. Thomson Learning, Belmont

    Google Scholar 

  • Sakai T, Kriz W (1987) The structural relationship between mesangial cells and basement membrane of the renal glomerulus. Anat Embryol (Berl) 176:373–386

    Article  CAS  Google Scholar 

  • Sakai T, Billo R, Nobiling R, Gorgas K, Kriz W (1988) Ultrastructure of the kidney of a South American caecilian, Typhlonectes compressicaudus (Amphibia, Gymnophiona). I. Renal corpuscle, neck segment, proximal tubule and intermediate segment. Cell Tissue Res 252:589–600

    Article  PubMed  CAS  Google Scholar 

  • Schnabel E, Anderson JM, Farquhar MG (1990) The tight junction protein ZO-1 is concentrated along slit diaphragms of the glomerular epithelium. J Cell Biol 111:1255–1263

    Article  PubMed  CAS  Google Scholar 

  • Schwarz R, Radke B (1981) Microscopic study of the effect of varied high concentrations of fluid on the morphology of renal corpuscles of the chicken (Gallus domesticus). Anat Histol Embryol 10:167–179 (In German with English abstract)

    Article  PubMed  CAS  Google Scholar 

  • Smith PG, Moreno R, Ikebe M (1997) Strain increases airway smooth muscle contractile and cytoskeletal proteins in vitro. Am J Physiol 272:L20–L27

    PubMed  CAS  Google Scholar 

  • Takahashi-Iwanaga H (2002) Comparative anatomy of the podocyte: a scanning electron microscopic study. Microsc Res Tech 57:196–202

    Article  PubMed  Google Scholar 

  • Takeda T, McQuistan T, Orlando RA, Farquhar MG (2001) Loss of glomerular foot processes is associated with uncoupling of podocalyxin from the actin cytoskeleton. J Clin Invest 108:289–301

    Article  PubMed  CAS  Google Scholar 

  • Uruno T, Liu J, Zhang P, Fan Y, Egile C, Li R, Mueller SC, Zhan X (2001) Activation of Arp2/3 complex-mediated actin polymerization by cortactin. Nat Cell Biol 3:259–266

    Article  PubMed  CAS  Google Scholar 

  • van Rossum AG, Schuuring-Scholtes E, van Buuren-van Seggelen V, Kluin PM, Schuuring E (2005) Comparative genome analysis of cortactin and HS1: the significance of the F-actin binding repeat domain. BMC Genomics 6:15

    Article  PubMed  CAS  Google Scholar 

  • Vasmant D, Maurice M, Feldmann G (1984) Cytoskeleton ultrastructure of podocytes and glomerular endothelial cells in man and in the rat. Anat Rec 210:17-24

    Article  PubMed  CAS  Google Scholar 

  • Virel A, Backman L (2004) Molecular evolution and structure of alpha-actinin. Mol Biol Evol 21:1024–1031

    Article  PubMed  CAS  Google Scholar 

  • Wachsstock DH, Schwartz WH, Pollard TD (1993) Affinity of alpha-actinin for actin determines the structure and mechanical properties of actin filament gels. Biophys J 65:205–214

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Parsons JT (1993) Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex. J Cell Biol 120:1417–1426

    Article  PubMed  CAS  Google Scholar 

  • Yaoita E, Franke WW, Yamamoto T, Kawasaki K, Kihara I (1999) Identification of renal podocytes in multiple species: higher vertebrates are vimentin positive/lower vertebrates are desmin positive. Histochem Cell Biol 111:107–115

    Article  PubMed  CAS  Google Scholar 

  • Youson JH, McMillan DB (1970) The opisthonephric kidney of the sea lamprey of the Great Lakes, Petromyzon marinus L. I. The renal corpuscle. Am J Anat 127:207–213

    Article  PubMed  CAS  Google Scholar 

  • Zou J, Yaoita E, Watanabe Y, Yoshida Y, Nameta M, Li H, Qu Z, Yamamoto T (2006) Upregulation of nestin, vimentin, and desmin in rat podocytes in response to injury. Virchows Arch 448:485–492

    Article  PubMed  CAS  Google Scholar 

  • Zuasti A, Agulleiro B, Hernandez F (1983) Ultrastructure of the kidney of the marine teleost Sparus auratus: the renal corpuscle and the tubular nephron. Cell Tissue Res 228:99–106

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Min Kyun Park (Graduate School of Science, University of Tokyo) for the kind gift of leopard geckos, and Mr. Koichi Ikarashi for his skillful technical assistance with the electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichiro Ichimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ichimura, K., Kurihara, H. & Sakai, T. Actin filament organization of foot processes in vertebrate glomerular podocytes. Cell Tissue Res 329, 541–557 (2007). https://doi.org/10.1007/s00441-007-0440-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0440-4

Keywords

Navigation