Skip to main content

Advertisement

Log in

Overexpression of the CHRNA5/A3/B4 genomic cluster in mice increases the sensitivity to nicotine and modifies its reinforcing effects

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Nicotinic acetylcholine receptors (nAChRs) are ligand-gated pentameric ion channels that account for the effects of nicotine. Recent genetic studies have highlighted the importance of variants of the CHRNA5/A3/B4 genomic cluster in human nicotine dependence. Among these genetic variants those found in non-coding segments of the cluster may contribute to the pathophysiology of tobacco use through alterations in the expression of these genes. To discern the in vivo effects of the cluster, we generated a transgenic mouse overexpressing the human CHRNA5/A3/B4 cluster using a bacterial artificial chromosome. Transgenic mice showed increased functional α3β4-nAChRs in brain regions where these subunits are highly expressed under normal physiological conditions. Moreover, they exhibited increased sensitivity to the pharmacological effects of nicotine along with higher activation of the medial habenula and reduced activation of dopaminergic neurons in the ventral tegmental area after acute nicotine administration. Importantly, transgenic mice showed increased acquisition of nicotine self-administration (0.015 mg/kg per infusion) and a differential response in the progressive ratio test. Our study provides the first in vivo evidence of the involvement of the CHRNA5/A3/B4 genomic cluster in nicotine addiction through modifying the activity of brain regions responsible for the balance between the rewarding and the aversive properties of this drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albuquerque EX, Pereira EF, Alkondon M, Rogers SW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89:73–120

    Article  PubMed  CAS  Google Scholar 

  • Altafaj X et al (2001) Neurodevelopmental delay, motor abnormalities and cognitive deficits in transgenic mice overexpressing Dyrk1A (minibrain), a murine model of Down’s syndrome. Hum Mol Genet 10:1915–1923

    Article  PubMed  CAS  Google Scholar 

  • Baker TB et al (2009) Human neuronal acetylcholine receptor A5-A3-B4 haplotypes are associated with multiple nicotine dependence phenotypes. Nicotine Tob Res 11:785–796

    Article  PubMed  CAS  Google Scholar 

  • Benowitz NL (2010) Nicotine addiction. N Engl J Med 362:2295–2303

    Article  PubMed  CAS  Google Scholar 

  • Berrettini W et al (2008) Alpha-5/alpha-3 nicotinic receptor subunit alleles increase risk for heavy smoking. Mol psychiatry 13:368–373

    Article  PubMed  CAS  Google Scholar 

  • Bierut LJ et al (2008) Variants in nicotinic receptors and risk for nicotine dependence. Am J Psychiatry 165:1163–1171

    Article  PubMed  Google Scholar 

  • Doyle GA et al (2011) In vitro and ex vivo analysis of CHRNA3 and CHRNA5 haplotype expression. PloS one 6:e23373

    Article  PubMed  CAS  Google Scholar 

  • Drenan RM et al (2008) In vivo activation of midbrain dopamine neurons via sensitized, high-affinity alpha 6 nicotinic acetylcholine receptors. Neuron 60:123–136

    Article  PubMed  CAS  Google Scholar 

  • Escorihuela RM et al (1995) A behavioral assessment of Ts65Dn mice: a putative Down syndrome model. Neurosci Lett 199:143–146

    Article  PubMed  CAS  Google Scholar 

  • Falvella FS et al (2009) Transcription deregulation at the 15q25 locus in association with lung adenocarcinoma risk. Clin Cancer Res 15:1837–1842

    Article  PubMed  CAS  Google Scholar 

  • Fowler CD, Lu Q, Johnson PM, Marks MJ, Kenny PJ (2011) Habenular alpha5 nicotinic receptor subunit signalling controls nicotine intake. Nature 471:597–601

    Article  PubMed  CAS  Google Scholar 

  • Frahm S et al (2011) Aversion to nicotine is regulated by the balanced activity of beta4 and alpha5 nicotinic receptor subunits in the medial habenula. Neuron 70:522–535

    Article  PubMed  CAS  Google Scholar 

  • Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic Press, San Diego p xxii (186) of plates

  • Gahring LC, Rogers SW (2010) Nicotinic receptor subunit alpha5 modifies assembly, up-regulation, and response to pro-inflammatory cytokines. J Biol Chem 285:26049–26057

    Article  PubMed  CAS  Google Scholar 

  • Gotti C, Clementi F (2004) Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 74:363–396

    Article  PubMed  CAS  Google Scholar 

  • Gotti C et al (2009) Structural and functional diversity of native brain neuronal nicotinic receptors. Biochem Pharmacol 78:703–711

    Article  PubMed  CAS  Google Scholar 

  • Greenbaum L, Lerer B (2009) Differential contribution of genetic variation in multiple brain nicotinic cholinergic receptors to nicotine dependence: recent progress and emerging open questions. Mol Psychiatry 14:912–945

    Article  PubMed  CAS  Google Scholar 

  • Kedmi M, Orr-Urtreger A (2007) Differential brain transcriptome of beta4 nAChR subunit-deficient mice: is it the effect of the null mutation or the background strain? Physiol Genomics 28:213–222

    PubMed  CAS  Google Scholar 

  • Klink R, de Kerchove d’Exaerde A, Zoli M, Changeux JP (2001) Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J Neurosci Off J Soc Neurosci 21:1452–1463

    CAS  Google Scholar 

  • Li MD et al (2010a) Association and interaction analysis of variants in CHRNA5/CHRNA3/CHRNB4 gene cluster with nicotine dependence in African and European Americans. Am J Med Genet B Neuropsychiatr Genet Off Publ Int Soc Psychiatric Genet 153B:745–756

    CAS  Google Scholar 

  • Li MD et al (2010b) Associations of variants in CHRNA5/A3/B4 gene cluster with smoking behaviors in a Korean population. PloS one 5:e12183

    Article  PubMed  Google Scholar 

  • Maccarrone M et al (2002) Age-related changes of anandamide metabolism in CB1 cannabinoid receptor knockout mice: correlation with behaviour. Eur J Neurosci 15:1178–1186

    Article  PubMed  Google Scholar 

  • Marubio LM et al (2003) Effects of nicotine in the dopaminergic system of mice lacking the alpha4 subunit of neuronal nicotinic acetylcholine receptors. Eur J Neurosci 17:1329–1337

    Article  PubMed  CAS  Google Scholar 

  • Maskos U et al (2005) Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors. Nature 436:103–107

    Article  PubMed  CAS  Google Scholar 

  • McDonough J, Deneris E (1997) beta43′: an enhancer displaying neural-restricted activity is located in the 3′-untranslated exon of the rat nicotinic acetylcholine receptor beta4 gene. J Neurosci Off J Soc Neurosci 17:2273–2283

    CAS  Google Scholar 

  • Mineur YS, Picciotto MR (2008) Genetics of nicotinic acetylcholine receptors: relevance to nicotine addiction. Biochem Pharmacol 75:323–333

    Article  PubMed  CAS  Google Scholar 

  • Mukhin AG et al (2000) 5-Iodo-A-85380, an alpha4beta2 subtype-selective ligand for nicotinic acetylcholine receptors. Mol Pharmacol 57:642–649

    PubMed  CAS  Google Scholar 

  • Nolan PM et al (2000) Implementation of a large-scale ENU mutagenesis program: towards increasing the mouse mutant resource. Mamm genome Off J Int Mamm Genome Soc 11:500–506

    Article  CAS  Google Scholar 

  • Saccone NL et al (2009a) Multiple distinct risk loci for nicotine dependence identified by dense coverage of the complete family of nicotinic receptor subunit (CHRN) genes. Am J Med Genet B Neuropsychiatr Genet Off Publ Int Soc Psychiatric Genet 150B:453–466

    CAS  Google Scholar 

  • Saccone NL et al (2009b) The CHRNA5-CHRNA3-CHRNB4 nicotinic receptor subunit gene cluster affects risk for nicotine dependence in African-Americans and in European-Americans. Cancer Res 69:6848–6856

    Article  PubMed  CAS  Google Scholar 

  • Salas R et al (2003a) The nicotinic acetylcholine receptor subunit alpha 5 mediates short-term effects of nicotine in vivo. Mol Pharmacol 63:1059–1066

    Article  PubMed  CAS  Google Scholar 

  • Salas R, Pieri F, Fung B, Dani JA, De Biasi M (2003b) Altered anxiety-related responses in mutant mice lacking the beta4 subunit of the nicotinic receptor. J Neurosci Off J Soc Neurosci 23:6255–6263

    CAS  Google Scholar 

  • Salas R, Pieri F, De Biasi M (2004) Decreased signs of nicotine withdrawal in mice null for the beta4 nicotinic acetylcholine receptor subunit. J Neurosci Off J Soc Neurosci 24:10035–10039

    Article  CAS  Google Scholar 

  • Schlaepfer IR et al (2008) The CHRNA5/A3/B4 gene cluster variability as an important determinant of early alcohol and tobacco initiation in young adults. Biol Psychiatry 63:1039–1046

    Article  PubMed  CAS  Google Scholar 

  • Soria G et al (2005) Lack of CB1 cannabinoid receptor impairs cocaine self-administration. Neuropsychopharmacology 30:1670–1680

    Article  PubMed  CAS  Google Scholar 

  • Tapper AR et al (2004) Nicotine activation of alpha4* receptors: sufficient for reward, tolerance, and sensitization. Science 306:1029–1032

    Article  PubMed  CAS  Google Scholar 

  • Wang JC et al (2009) Risk for nicotine dependence and lung cancer is conferred by mRNA expression levels and amino acid change in CHRNA5. Hum Mol Genet 18:3125–3135

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Scott MM, Deneris ES (2006) Shared long-range regulatory elements coordinate expression of a gene cluster encoding nicotinic receptor heteromeric subtypes. Mol Cell Biol 26:5636–5649

    Article  PubMed  CAS  Google Scholar 

  • Zhu PJ, Stewart RR, McIntosh JM, Weight FF (2005) Activation of nicotinic acetylcholine receptors increases the frequency of spontaneous GABAergic IPSCs in rat basolateral amygdala neurons. J Neurophysiol 94:3081–3091

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Lola Pérez and Ester Blasco for their excellent technical assistance and Helen Kamens for her suggestions while writing the manuscript. This work was funded by the Catalan Government (2009SGR1313) Spanish Ministry of Education and Sciences SAF2007-60827, SAF2007-31093-E, SAF2010-16427; Phecomp (EU LSHM-CT-2007-037669), EU/FIS PS09102673, ERARare, Ministerio de Salud y Consumo (RTA G03/005, PI05/0513 and PI082038), University of the Basque Country (1/UPV 0026.327-E-15924/2004) and Plan Nacional sobre Drogas (PNDMSC 2005), Fundación Ramón Areces, Reina Sofia, Marató TV3, and CIBERER. P.M. is a scientific researcher supported by the Juan de la Cierva program of Ministerio de Ciencia e Innovación, and a grant from the National Institutes on Drug Abuse (R01 DA003194 to MJM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mara Dierssen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallego, X., Molas, S., Amador-Arjona, A. et al. Overexpression of the CHRNA5/A3/B4 genomic cluster in mice increases the sensitivity to nicotine and modifies its reinforcing effects. Amino Acids 43, 897–909 (2012). https://doi.org/10.1007/s00726-011-1149-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1149-y

Keywords

Navigation