Skip to main content

Advertisement

Log in

Molecular dynamics simulations of the human CAR ligand-binding domain: deciphering the molecular basis for constitutive activity

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The constitutive androstane receptor (CAR) belongs to the superfamily of nuclear-hormone receptors that function as ligand-activated transcription factors. CAR plays an essential role in the metabolism of xenobiotics and shows—in contrast to related receptors—constitutive activity. However, the molecular basis for the constitutive activity remains unclear. In the present study, homology models of the ligand binding domain (LBD) were generated based on the crystal structures of the related pregnane X (PXR) and the vitamin D receptor (VDR). The models were used to investigate the basal activity of CAR and the effect of coactivator binding. Molecular dynamics (MD) simulations of complexed and uncomplexed receptor revealed a hypothesis for the activation mechanism. The suggested mechanism is supported by experimental results from site-directed mutagenesis. The basal activity of CAR can be explained by specific van-der-Waals interactions between amino acids on the LBD and its C-terminal activation domain (AF-2). Docking studies with the GOLD program yielded the interaction modes of structurally diverse agonists, giving insight into mechanisms by which ligands enhance CAR activity.

Figure The constitutive activity. Favorable regions of interactions between the GRID methyl probe and the AF-2 truncated LBD (colored magenta, contour level -2.5 kcal mol 1). Only the MOLCAD surface of the LBD is shown, colored according to the lipophilic potential (blue polar, brown lipophilic). The position of the two hydrophobic residues Leu343 and Ile346 from the AF-2 helix (colored cyan) is in close agreement with the GRID results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CAR:

Constitutive androstane receptor

CITCO:

(6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime

DBD:

DNA binding domain

LBD:

Ligand binding domain

PXR:

Pregnane X receptor

RXR:

Retinoid X receptor

SRC-1:

Steroid receptor coactivator 1

TMPP:

Tri-p-methylphenylphosphate

VDR:

Vitamin D receptor

References

  1. Guengerich FP (1989) Annu Rev Pharmacol Toxicol 29:241–263

    CAS  PubMed  Google Scholar 

  2. Turkey RH, Strassburg CP (2000) Annu Rev Pharmacol Toxicol 40:581–616

    PubMed  Google Scholar 

  3. Borst P, Oude Elferink R (2002) Annu Rev Biochem 71:537–592

    Article  CAS  PubMed  Google Scholar 

  4. Okey AB (1990) Pharmacol Ther 45:241–298

    Google Scholar 

  5. Willson TM, Kliewer SA (2002) Nat Rev 1:259–266

    Google Scholar 

  6. Baes M, Gulick T, Choi HS, Martinoli MG, Simha G, Moore DD (1994) Mol Cell Biol 14:1544–1551

    CAS  PubMed  Google Scholar 

  7. Kliewer SA, Moore JT, Wade L, Staudinger JL, Watson MA, Jones SA, McKee DD, Oliver BB, Willson TM, Zetterstrom RH, Perlmann T, Lehmann JM (1998) Cell 92:73–82

    CAS  PubMed  Google Scholar 

  8. Laudet V, Gronemeyer H (2002) The nuclear receptor factsbook. Academic Press, London

    Google Scholar 

  9. Moras D, Gronemeyer H (1998) Curr Opin Cell Biol 10:384–391

    CAS  PubMed  Google Scholar 

  10. McKenna NJ, Lanz RB, O’Malley BW (1999) Endocr Rev 20:321–344

    Article  CAS  PubMed  Google Scholar 

  11. Honkakoski P, Zelko I, Sueyoshi T, Negishi M (1998) Mol Cell Biol 1:5652–5658

    Google Scholar 

  12. Ueda A, Hamadeh HK, Webb HK, Yamamoto Y, Sueyoshi T, Afshari CA, Lehmann JM, Negishi M (2002) Mol Pharmacol 61:1–6

    Google Scholar 

  13. Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kurokawa R, Rosenfeld MG, Willson TM, Glass CK, Milburn MV (1998) Nature 395:137–143

    CAS  PubMed  Google Scholar 

  14. Maglich JM, Parks DJ, Moore LB, Collins JL, Goodwin B, Billin AN, Stoltz CA, Kliewer SA, Lambert MH, Willson TM, Moore JT (2003) J Biol Chem 278:17277–17283

    CAS  PubMed  Google Scholar 

  15. Honkakoski P, Palvimo JJ, Penttila L, Vepsäläinen J, Auriola S (2004) Biochem Pharmacol 67:97–106

    Google Scholar 

  16. Toell A, Kröncke KD, Kleinert H, Carlberg C (2002) J Cell Biochem 85:72–82

    CAS  PubMed  Google Scholar 

  17. Mäkinen J, Frank C, Jyrkkärinne J, Gynther J, Carlberg C, Honkakoski P (2002) Mol Pharmacol 62:366–378

    Google Scholar 

  18. Jyrkkärinne J, Makinen J, Gynther J, Savolainen H, Poso A, Honkakoski P (2003) J Med Chem 46:4687–4695

    PubMed  Google Scholar 

  19. Watkins RE, Wisely GB, Moore LB, Collins JL, Lambert MH, Williams SP, Willson TM, Kliewer SA, Redinbo MR (2001) Science 292:2329–2333

    CAS  PubMed  Google Scholar 

  20. Rochel N, Wurtz JM, Mitschler A, Klaholz B, Moras D (2000) Mol Cell 5:173–179

    CAS  PubMed  Google Scholar 

  21. Watkins RE, Davis-Searles PR, Lambert MH, Redinbo MR (2003) J Mol Biol 331:815–828

    CAS  PubMed  Google Scholar 

  22. Andersin T, Väisänen S, Carlberg C (2003) Mol Endocrinol 17:234–246

    CAS  PubMed  Google Scholar 

  23. Frank C, Molnar F, Matilainen M, Lempiainen H, Carlberg C (2004) J Biol Chem 279:33558–33566

    CAS  PubMed  Google Scholar 

  24. Darimont BD, Wagner RL, Apriletti JW, Stallcup MR, Kushner PJ, Baxter JD, Fletterick RJ, Yamamoto KR (1998) Genes Dev 12:3343–3356

    Google Scholar 

  25. Feng W, Ribeiro RC, Wagner RL, Nguyen H, Apriletti JW, Fletterick RJ, Baxter JD, Kushner PJ, West BL (1998) Science 280:1747–1749

    CAS  PubMed  Google Scholar 

  26. Xu HE, Lambert MH, Montana VG, Plunket KD, Moore LB, Collins JL, Oplinger JA, Kliewer SA, Gampe Jr RT, McKee DD, Moore JT, Willson TM (2001) Proc Natl Acad Sci USA 98:13919–13924

    CAS  PubMed  Google Scholar 

  27. Gampe Jr RT, Montana VG, Lambert MH, Miller AB, Bledsoe RK, Milburn MV, Kliewer SA, Willson TM, Xu HE (2001) Mol Cell 5:545–555

    Google Scholar 

  28. GOLD Version 2.1 (2003) CCDC, Cambridge, UK

  29. Sablin EP, Krylova IN, Fletterick RJ, Ingraham HA (2003) Mol Cell 11:1575–1585

    CAS  PubMed  Google Scholar 

  30. Greschik H, Wurtz JM, Sanglier S, Bourguet W, van Dorsselaer A, Moras D, Renaud JP (2002) Mol Cell 9:303–313

    CAS  PubMed  Google Scholar 

  31. Xiao L, Cui X, Madison V, White RE, Cheng KC (2003) Drug Metab Dispos 30:951–956

    Google Scholar 

  32. Watkins RE, Maglich JM, Moore LB, Wisely GB, Noble SM, Davis-Searles PR, Lambert MH, Kliewer SA, Redinbo MR (2003) Biochemistry 42:1430–1438

    CAS  PubMed  Google Scholar 

  33. Dussault I, Lin M, Hollister K, Fan M, Termini J, Sherman MA, Forman BM (2002) Mol Cell Biol 22:5270–5280

    CAS  PubMed  Google Scholar 

  34. Moore JT, Moore LB, Maglich JM, Kliewer SA (2003) Biochim Biophys Acta 1691:235–238

    Google Scholar 

  35. Jacobs MN, Dickins M, Lewis DFV (2003) J Steroid Biochem Mol Biol 84:117–132

    CAS  Google Scholar 

  36. INSIGHT II (2000) MSI, San Diego, USA

  37. Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ (1994) Nucleic Acids Res 22:4673–4680

    CAS  PubMed  Google Scholar 

  38. Bower MJ, Cohen FE, Dunbrack Jr LR (1997) J Mol Biol 267:1268–1280

    CAS  PubMed  Google Scholar 

  39. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. Reidel, Dordrecht, pp 331–342

    Google Scholar 

  40. GROMACS Version 3.1.4 (2002) BIOSON Research institute and laboratory of biophysical chemistry, University of Groningen, The Netherlands

  41. Berendsen HJC, Postma JPM, DiNola A, Haak JR (1984) J Chem Phys 81:3684–3690

    CAS  Google Scholar 

  42. Kelley LA, Gardner SP, Sutcliffe MJ (1996) Prot Eng 9:1063–1065

    CAS  Google Scholar 

  43. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  44. Fischer D, Eisenberg D (1999) Curr Opin Struct Biol 9:208–211

    CAS  PubMed  Google Scholar 

  45. Laskowski RA (1995) J Mol Graph 13:323–330

    CAS  PubMed  Google Scholar 

  46. Sybyl 6.9 (2003) Tripos Inc., St. Louis, USA

  47. GRID21 (2003) Moldiscovery Ltd. Pinner, Middlesex, UK

  48. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Windshügel.

Additional information

Dedicated to Prof. Dr. H-D. Höltje on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Windshügel, B., Jyrkkärinne, J., Poso, A. et al. Molecular dynamics simulations of the human CAR ligand-binding domain: deciphering the molecular basis for constitutive activity. J Mol Model 11, 69–79 (2005). https://doi.org/10.1007/s00894-004-0227-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-004-0227-4

Keywords

Navigation