Skip to main content
Log in

Roles of organic anion transporters (OATs) and a urate transporter (URAT1) in the pathophysiology of human disease

  • REVIEW ARTICLE
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Renal proximal and distal tubules are highly polarized epithelial cells that carry out the specialized directional transport of various solutes. This renal function, which is essential for homeostasis in the body, is achieved through the close pairing of apical and basolateral carriers expressed in the renal epithelial cells. The family of organic anion transporters (OATs), which belong to the major facilitator superfamily (SLC22A), are expressed in the renal epithelial cells to regulate the excretion and reabsorption of endogenous and exogenous organic anions. We now understand that these OATs are crucial components in the renal handling of drugs and their metabolites, and they are implicated in various clinically important drug interactions, and their adverse reactions. In recent years, the molecular entities of these transporters have been identified, and their function and regulatory mechanisms have been partially clarified. Workers in this field have identified URAT1 (urate transporter 1), a novel member of the OAT family that displays unique and selective substrate specificity compared with other multispecific OATs. In the OAT family, URAT1 is the main transporster responsible for human genetic diseases. In this review, we introduce and discuss some novel aspects of OATs, with special emphasis on URAT1, in the context of their biological significance, functional regulation, and roles in human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T Sekine SH Cha H Endou (2000) ArticleTitleThe multispecific organic anion transporter (OAT) family Pflügers Arch 440 337–50 Occurrence Handle10.1007/s004240000297 Occurrence Handle10954321

    Article  PubMed  Google Scholar 

  2. BC Bruckhardt G Bruckhardt (2003) ArticleTitleTransport of organic anions across the basolateral membrane of proximal tubule cells Rev Physiol Biochem Pharmacol 146 95–158 Occurrence Handle12605306

    PubMed  Google Scholar 

  3. DH Sweet KT Bush SK Nigam (2001) ArticleTitleThe organic anion transporter family: from physiology to ontogeny and the clinic Am J Physiol 281 F197–205

    Google Scholar 

  4. H Koepsell H Endou (2004) ArticleTitleThe SLC22 drug transporter family Pflügers Arch 447 666–76 Occurrence Handle10.1007/s00424-003-1089-9 Occurrence Handle12883891

    Article  PubMed  Google Scholar 

  5. MA Hediger MF Romero JB Peng A Rolfs H Takanaga EA Bruford (2004) ArticleTitleThe ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins Pflügers Arch 447 465–8 Occurrence Handle10.1007/s00424-003-1192-y Occurrence Handle14624363

    Article  PubMed  Google Scholar 

  6. T Sekine N Watanabe M Hosoyamada Y Kanai H Endou (1997) ArticleTitleExpression cloning and characterization of a novel multispecific organic anion transporter J Biol Chem 272 18526–9 Occurrence Handle10.1074/jbc.272.30.18526 Occurrence Handle9228014

    Article  PubMed  Google Scholar 

  7. DH Sweet NA Wolff JB Pritchard (1997) ArticleTitleExpression cloning and characterization of ROAT1, the basolateral organic anion transporter in rat kidney J Biol Chem 272 30088–95 Occurrence Handle10.1074/jbc.272.48.30088 Occurrence Handle9374486

    Article  PubMed  Google Scholar 

  8. G Reid NA Wolff FM Dautzenberg G Burckhardt (1998) ArticleTitleCloning of a human renal p-aminohippurate transporter, hROAT1 Kidney Blood Press Res 21 233–7 Occurrence Handle10.1159/000025863 Occurrence Handle9762842

    Article  PubMed  Google Scholar 

  9. M Hosoyamada T Sekine Y Kanai H Endou (1999) ArticleTitleMolecular cloning and functional expression of a multispecific organic anion transporter from human kidney Am J Physiol Renal Physiol 276 F122–8

    Google Scholar 

  10. T Sekine SH Cha M Tsuda N Apiwattanakul N Nakajima Y Kanai et al. (1998) ArticleTitleIndentification of multispecific organic anion transporter 2 expressed predominantly in the liver FEBS Lett 429 179–82 Occurrence Handle10.1016/S0014-5793(98)00585-7 Occurrence Handle9650585

    Article  PubMed  Google Scholar 

  11. A Enomoto M Takeda M Shimoda S Narikawa Y Kobayashi Y Kobayashi et al. (2002) ArticleTitleInteraction of human organic anion transporters 2 and 4 with organic anion transport inhibitors J Pharmacol Exp Ther 301 797–802 Occurrence Handle10.1124/jpet.301.3.797 Occurrence Handle12023506

    Article  PubMed  Google Scholar 

  12. H Kusuhara T Sekine N Utsunomiya-Tate M Tsuda R Kojima SH Cha et al. (1999) ArticleTitleMolecular cloning and characterization of a new multispecifc organic anion transporter from rat brain J Biol Chem 274 13675–80 Occurrence Handle10.1074/jbc.274.19.13675 Occurrence Handle10224140

    Article  PubMed  Google Scholar 

  13. SH Cha T Sekine JI Fukushima Y Kanai Y Kobayashi T Goya et al. (2001) ArticleTitleIdentification and characterization of human organic anion transporter 3 expressing predominantly in the kidney Mol Pharmacol 59 1277–86 Occurrence Handle11306713

    PubMed  Google Scholar 

  14. SH Cha T Sekine H Kusuhara E Yu JY Kim DK Kim et al. (2000) ArticleTitleMolecular cloning and characterization of multispecifc organic anion transporter 4 expressed in the placenta J Biol Chem sx275 4507–12 Occurrence Handle10.1074/jbc.275.6.4507

    Article  Google Scholar 

  15. DA Sica AC Schoolwerth (2000) Renal handling of organic anions and cations: Excretion of uric acid BM Brenner (Eds) The kidney EditionNumber6th ed. WB Saunders Philadelphia 680–700

    Google Scholar 

  16. DH Sweet DS Miller JB Pritchard Y Fujiwara DR Beier SK Nigam (2002) ArticleTitleImpaired organic anion transport in kidney and choroids plexus of organic anion transporter 3 (Oat3 (Slc22a8)) knockout mice J Biol Chem 277 26934–43 Occurrence Handle10.1074/jbc.M203803200 Occurrence Handle12011098

    Article  PubMed  Google Scholar 

  17. A Enomoto H Kimura A Chairoungdua Y Shigeta P Jutabha SH Cha et al. (2002) ArticleTitleMolecular identification of a renal urate anion exchanger that regulates blood urate levels Nature 417 447–52 Occurrence Handle12024214

    PubMed  Google Scholar 

  18. X Wu CC Lee DM Muzny CT Caskey (1989) ArticleTitleUrate oxidase: primary structure and evolutionary implications Proc Natl Acad Sci USA 86 9412–6 Occurrence Handle2594778

    PubMed  Google Scholar 

  19. X Wu DM Muzny CC Lee CT Caskey (1992) ArticleTitleTwo independent mutational events in the loss of urate oxidase J Mol Evol 34 78–84 Occurrence Handle10.1007/BF00163854 Occurrence Handle1556746

    Article  PubMed  Google Scholar 

  20. RW Berlinger JG Hilton TF Yü TJ Kennedy SuffixJr (1950) ArticleTitleThe renal mechanism for urate excretion in man J Clin Invest 9 396–401

    Google Scholar 

  21. JK Maesaka S Fishbane (1998) ArticleTitleRegulation of renal urate excretion: a critical review Am J Kidney Dis 32 917–33 Occurrence Handle9856507

    PubMed  Google Scholar 

  22. RG Abramson MS Lipkowitz (1990) Evolution of the uric acid transport mechanisms in vertebrate kidney RKH Kinne (Eds) Basic principles in transport. Comparative Physiology, Vol. 3 Karger Basel 115–53

    Google Scholar 

  23. InstitutionalAuthorNameInternational Human Genome Sequencing Consortium (2001) ArticleTitleInitial sequencing and analysis of the human genome Nature 409 860–921

    Google Scholar 

  24. M Nakashima T Uematsu K Kosuge M Kanamaru (1992) ArticleTitlePilot study of the uricosuric effects of DuP-753, a new angiotensin II receptor antagonist, in healthy subjects Eur J Clin Pharmacol 42 333–5 Occurrence Handle10.1007/BF00266358 Occurrence Handle1577054

    Article  PubMed  Google Scholar 

  25. F Roch-Ramel D Werner B Guisan (1994) ArticleTitleUrate transport in brush-border membrane of human kidney Am J Physiol 266 F797–F805 Occurrence Handle8203564

    PubMed  Google Scholar 

  26. TH Steele (1976) ArticleTitleUrate secretion in man: the pyrazinamide suppression test Ann Intern Med 79 734–7

    Google Scholar 

  27. JH Cullen M LeVine JM Fiore (1957) ArticleTitleStudies of hyperuricemia produced by pyrazinamide Am J Med 23 587–95 Occurrence Handle10.1016/0002-9343(57)90229-2 Occurrence Handle13469829

    Article  PubMed  Google Scholar 

  28. Y Kikuchi H Koga Y Yasutomo Y Kawabata E Shimizu M Naruse et al. (2000) ArticleTitlePatients with renal hypouricemia with exercise-induced acute renal failure and chronic renal dysfunction Clin Nephrol 53 467–72 Occurrence Handle10879667

    PubMed  Google Scholar 

  29. T Igarashi T Sekine H Sugimura H Hayakawa T Arayama (1993) ArticleTitleAcute renal failure after exercise in a child with renal hypouricemia Pediatr Nephrol 7 292–3 Occurrence Handle10.1007/BF00853226 Occurrence Handle8518102

    Article  PubMed  Google Scholar 

  30. I Ishikawa Y Sakurai S Masuzaki N Sugishita A Shinoda N Shikura (1990) ArticleTitleExercise-induced acute renal failure in 3 patients with renal hypouricemia Nippon Jinzo Gakkai Shi 32 923–8 Occurrence Handle2250410

    PubMed  Google Scholar 

  31. T Murakami H Kawakami M Fukuda H Shiigi (1993) ArticleTitleRecurrence of acute renal failure and renal hypouricemia Pediatr Nephrol 7 772–3 Occurrence Handle10.1007/BF01213352 Occurrence Handle8130103

    Article  PubMed  Google Scholar 

  32. Online Mendelian Inheritance in Man. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM

  33. JY Yeun JA Hasbargen (1995) ArticleTitleRenal hypouricemia: prevention of exercise-induced acute renal failure and a review of the literature Am J Kidney Dis 25 937–46 Occurrence Handle7771493

    PubMed  Google Scholar 

  34. I Hisatome K Ogino M Saito J Miyamoto J Hasegawa H Kotake et al. (1988) ArticleTitleRenal hypouricemia due to an isolated renal defect of urate transport Nephron 49 81–3 Occurrence Handle3380222

    PubMed  Google Scholar 

  35. M Shichiri O Matsuda T Shiigai J Takeuchi M Kanayama (1982) ArticleTitleRenal tubular hypouricemia: evidence for defect of both secretion and reabsorption Arch Intern Med 142 1855–7 Occurrence Handle10.1001/archinte.142.10.1855 Occurrence Handle7125770

    Article  PubMed  Google Scholar 

  36. I Hisatome K Ogino H Kotake R Ishiko M Saito J Hasegawa et al. (1989) ArticleTitleCause of persistent hypouricemia in outpatients Nephron 51 13–6 Occurrence Handle2915747

    PubMed  Google Scholar 

  37. I Ishikawa (2002) ArticleTitleAcute renal failure with severe loin pain and patchy renal ischemia after anaerobic exercise in patients with or without renal hypouricemia Nephron 91 559–70 Occurrence Handle10.1159/000065013 Occurrence Handle12138255

    Article  PubMed  Google Scholar 

  38. F Komoda T Sekine J Inatomi A Enomoto H Endou T Ota et al. (2004) ArticleTitleThe W258X mutation in SLC22A12 is the predominant cause of Japanese renal hypouricemia Pediatr Nephrol 19 728–33 Occurrence Handle10.1007/s00467-004-1424-1 Occurrence Handle15054642

    Article  PubMed  Google Scholar 

  39. M Tanaka K Itoh K Matsushita K Matsushita N Wakita M Adachi et al. (2003) ArticleTitleTwo male siblings with hereditary renal hypouricemia and exercise-induced ARF Am J Kidney Dis 42 1287–92 Occurrence Handle10.1053/j.ajkd.2003.08.032 Occurrence Handle14655203

    Article  PubMed  Google Scholar 

  40. K Ichida M Hosoyamada I Hisatome A Enomoto M Hikita H Endou et al. (2004) ArticleTitleClinical and molecular analysis of patients with renal hypouricemia in Japan: influence of URAT1 gene on urinary urate excretion J Am Soc Nephrol 15 164–73 Occurrence Handle10.1097/01.ASN.0000105320.04395.D0 Occurrence Handle14694169

    Article  PubMed  Google Scholar 

  41. A Halabe O Sperling (1994) ArticleTitleUric acid nephrolithiasis Miner Electrolyte Metab 20 424–31 Occurrence Handle7783706

    PubMed  Google Scholar 

  42. DH Sweet JB Pritchard (1999) ArticleTitleThe molecular biology of renal organic anion and organic cation transporters Cell Biochem Biophys 31 89–118 Occurrence Handle10.1159/000052181 Occurrence Handle10505670

    Article  PubMed  Google Scholar 

  43. C Sauvant H Holzinger M Gekle (2001) ArticleTitleModulation of the basolateral and apical step of transepithelial organic anion secretion in proximal tubular opossum kidney cells J Biol Chem 276 14695–703 Occurrence Handle10.1074/jbc.M007046200 Occurrence Handle11278330

    Article  PubMed  Google Scholar 

  44. G You K Kuze RA Kohanski K Amsler S Henderson (2000) ArticleTitleRegulation of mOAT-mediated organic anion transport by ocadaic acid and protein kinase C in LLC-PK1 cells J Biol Chem 275 10278–84 Occurrence Handle10.1074/jbc.275.14.10278 Occurrence Handle10744714

    Article  PubMed  Google Scholar 

  45. AY Hung M Sheng (2002) ArticleTitlePDZ domains: structural modules for protein complex assembly J Biol Chem 277 5699–702 Occurrence Handle10.1074/jbc.R100065200 Occurrence Handle11741967

    Article  PubMed  Google Scholar 

  46. Anzai N, Miyazaki H, Noshiro R, Khamdang S, Chairoungdua A, Shin HJ, et al. The multivalent PDZ domain-containing protein PDZK1 regulates transport activity of renal urate–anion exchanger URAT1 via its C-terminal. J Biol Chem 2004; in press

  47. O Kocher N Comella K Tognazzi LF Brown (1998) ArticleTitleIdentification and partial characterization of PDZK1: a novel protein containing PDZ interaction domains Lab Invest 78 117–25 Occurrence Handle9461128

    PubMed  Google Scholar 

  48. SM Gisler S Pribanic D Bacic P Forrer A Gantenbein LA Sabourin et al. (2003) ArticleTitlePDZK1. I. A major scaffolder in brush borders of proximal tubular cells Kidney Int 64 1733–45 Occurrence Handle10.1046/j.1523-1755.2003.00266.x Occurrence Handle14531806

    Article  PubMed  Google Scholar 

  49. S Wang H Yue RB Derin WB Guggino M Li (2000) ArticleTitleAccessory protein facilitated CFTR–CFTR interaction: a molecular mechanism to potentiate the chloride channel activity Cell 103 169–79 Occurrence Handle10.1016/S0092-8674(00)00096-9 Occurrence Handle11051556

    Article  PubMed  Google Scholar 

  50. M Hosoyamada K Ichida A Enomoto T Hosoya H Endou (2004) ArticleTitleFunction and localization of urate transporter 1 in mouse kidney J Am Soc Nephrol 15 261–8 Occurrence Handle10.1097/01.ASN.0000107560.80107.19 Occurrence Handle14747372

    Article  PubMed  Google Scholar 

  51. DH Kang T Nakagawa L Feng S Watanabe L Han M Mazzali et al. (2002) ArticleTitleA role of uric acid in the progression of renal disease J Am Soc Nephrol 13 2888–97 Occurrence Handle10.1097/01.ASN.0000034910.58454.FD Occurrence Handle12444207

    Article  PubMed  Google Scholar 

  52. RJ Johnson DH Kang D Feig S Kivlighn J Kanellis S Watanabe et al. (2003) ArticleTitleIs there a pathogenic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension 41 1183–90 Occurrence Handle10.1161/01.HYP.0000069700.62727.C5 Occurrence Handle12707287

    Article  PubMed  Google Scholar 

  53. OI Aruoma B Halliwell (1989) ArticleTitleInactivation of alpha 1-antiproteinase by hydroxyl radicals. The effect of uric acid FEBS Lett 244 76–80 Occurrence Handle10.1016/0014-5793(89)81166-4 Occurrence Handle2538353

    Article  PubMed  Google Scholar 

  54. H Kaur B Halliwell (1990) ArticleTitleAction of biologically relevant oxidizing species upon urate. Identification of urate oxidation products Chem Biol Interact 73 235–47 Occurrence Handle10.1016/0009-2797(90)90006-9 Occurrence Handle2155712

    Article  PubMed  Google Scholar 

  55. GS Scott SV Spitsin RB Kean T Mikheeva H Koprowski DC Hooper (2002) ArticleTitleTherapeutic intervention in experimental allergic encephalomyelitis by administration of uric acid precursors Proc Natl Acad Sci USA 99 16303–8 Occurrence Handle10.1073/pnas.212645999 Occurrence Handle12451183

    Article  PubMed  Google Scholar 

  56. DC Hooper S Spitsin RB Kean JM Champion GM Dickson I Chaudhry et al. (1998) ArticleTitleUric acid, a natural scavenger of peroxynitrite, in experimental allergic encephalomyelitis and multiple sclerosis Proc Natl Acad Sci USA 95 675–80 Occurrence Handle10.1073/pnas.95.2.675 Occurrence Handle9435251

    Article  PubMed  Google Scholar 

  57. SV Spitsin GS Scott T Mikheeva A Zborek RB Kean CM Brimer et al. (2002) ArticleTitleComparison of uric acid and ascorbic acid in protection against EAE Free Radic Biol Med 33 1363–71 Occurrence Handle10.1016/S0891-5849(02)01048-1 Occurrence Handle12419468

    Article  PubMed  Google Scholar 

  58. Y Hellsten PC Tullson EA Richter J Bangsbo (1997) ArticleTitleOxidation of urate in human skeletal muscle during exercise Free Radic Biol Med 22 169–74 Occurrence Handle10.1016/S0891-5849(96)00286-9 Occurrence Handle8958141

    Article  PubMed  Google Scholar 

  59. Y Shi J Evans KL Rock (2003) ArticleTitleMolecular identification of a danger signal that alerts the immune system to dying cells Nature 425 516–21

    Google Scholar 

  60. RG Cutler (1991) ArticleTitleAntioxidants and aging Am J Clin Nutr 53 373S–379S Occurrence Handle1985414

    PubMed  Google Scholar 

  61. MA Hediger (2002) ArticleTitleGateway to a long life? Nature 417 393–5 Occurrence Handle10.1038/417393a Occurrence Handle12024201

    Article  PubMed  Google Scholar 

  62. A Enomoto M Takeda A Tojo T Sekine SH Cha S Khamdang et al. (2002) ArticleTitleRole of organic anion transporters in the tubular transport of indoxyl sulfate and the induction of its nephrotoxicity J Am Soc Nephrol 13 1711–20 Occurrence Handle10.1097/01.ASN.0000022017.96399.B2 Occurrence Handle12089366

    Article  PubMed  Google Scholar 

  63. I Aoyama T Niwa (2001) ArticleTitleMolecular insights into preventive effects of AST-120 on the progression of renal failure Clin Exp Nephrol 5 209–16 Occurrence Handle10.1007/s10157-001-8015-2

    Article  Google Scholar 

  64. T Niwa M Ise (1994) ArticleTitleIndoxyl sulfate, a circulating uremic toxin, stimulates the progression of glomerular sclerosis J Lab Clin Med 124 96–104 Occurrence Handle8035108

    PubMed  Google Scholar 

  65. T Niwa T Nomura S Sugiyama T Miyazaki S Tsukushi S Tsutsui (1997) ArticleTitleThe protein metabolite hypothesis, a model for the progression of renal failure: an oral adsorbent lowers indoxyl sulfate levels in undialyzed uremic patients 52 Suppl 62 S23–8

    Google Scholar 

  66. T Miyazaki M Ise H Seo T Niwa (1997) ArticleTitleIndoxyl sulfate increases the gene expression of TGF-β1, TIMP-1 and pro-α(I) collagen in uremic rat kidneys Kidney Int 52 IssueIDSuppl 62 S15–22

    Google Scholar 

  67. T Deguchi H Kusuhara A Takadate H Endou M Otagiri Y Sugiyama (2004) ArticleTitleCharacterization of uremic toxin transport by organic anion transporters in the kidney Kidney Int 65 162–74 Occurrence Handle10.1111/j.1523-1755.2004.00354.x Occurrence Handle14675047

    Article  PubMed  Google Scholar 

  68. SA Eraly RC Blantz V Bhatnagar SK Nigam (2003) ArticleTitleNovel aspects of renal organic anion transporters Curr Opin Nephrol Hypertens 12 551–8 Occurrence Handle12920404

    PubMed  Google Scholar 

  69. JI Nezu I Tamai A Oku R Ohashi H Yabuuchi N Hoshimoto et al. (1999) ArticleTitlePrimary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter Nat Genet 21 91–4 Occurrence Handle10.1038/5030 Occurrence Handle9916797

    Article  PubMed  Google Scholar 

  70. S Tokuhiro R Yamada X Chang A Suzuki Y Kochi T Sawada (2003) ArticleTitleAn intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis Nat Genet 35 341–8 Occurrence Handle10.1038/ng1267 Occurrence Handle14608356

    Article  PubMed  Google Scholar 

  71. VD Peltekova RF Wintle LA Rubin CI Amos Q Huang X Gu et al. (2004) ArticleTitleFunctional variants of OCTN cation transporter genes are associated with Crohn disease Nat Genet 36 471–5 Occurrence Handle10.1038/ng1339 Occurrence Handle15107849

    Article  PubMed  Google Scholar 

  72. A Enomoto MF Wempe H Tsuchida HJ Shin SH Cha N Anzai et al. (2002) ArticleTitleMolecular identification of a novel carnitine transporter specific to human testis. Insights into the mechanism of carnitine recognition J Biol Chem 277 36262–71 Occurrence Handle10.1074/jbc.M203883200 Occurrence Handle12089149

    Article  PubMed  Google Scholar 

  73. C Jeulin LM Lewin (1996) ArticleTitleRole of free L-carnitine and acetyl-L-carnitine in post-gonadal maturation of mammalian spermatozoa Hum Reprod Update 2 87–102 Occurrence Handle10.1093/humupd/2.2.87 Occurrence Handle9079406

    Article  PubMed  Google Scholar 

  74. N Bakhiya A Bahn G Burckhardt NA Wolff (2003) ArticleTitleHuman organic anion transporter 3 (hOAT3) can operate as an exchanger and mediate secretory urate efflux Cell Physiol Biochem 13 249–56 Occurrence Handle10.1159/000074539 Occurrence Handle14586168

    Article  PubMed  Google Scholar 

  75. S Ekaratanawong N Anzai P Jutabha H Miyazaki R Noshiro M Takeda et al. (2004) ArticleTitleHuman organic anion transporter 4 is a renal apical organic anion/dicarboxylate exchanger in the proximal tubules J Pharmacol Sci 94 297–304 Occurrence Handle10.1254/jphs.94.297 Occurrence Handle15037815

    Article  PubMed  Google Scholar 

  76. K Ichida M Hosoyamada H Kimura M Takeda Y Utsunomiya T Hosoya et al. (2003) ArticleTitleUrate transport via human PAH transporter hOAT1 and its gene structure Kidney Int 63 143–55 Occurrence Handle10.1046/j.1523-1755.2003.00710.x Occurrence Handle12472777

    Article  PubMed  Google Scholar 

  77. MS Lipkowitz E Leal-Pinto JZ Rappoport V Najfeld RG Abramson (2001) ArticleTitleFunctional reconstitution, membrane targeting, genomic structure, and chromosomal localization of a human urate transporter J Clin Invest 107 1103–15 Occurrence Handle11342574

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Endou.

About this article

Cite this article

Enomoto, A., Endou, H. Roles of organic anion transporters (OATs) and a urate transporter (URAT1) in the pathophysiology of human disease. Clin Exp Nephrol 9, 195–205 (2005). https://doi.org/10.1007/s10157-005-0368-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-005-0368-5

Key words

Navigation