Skip to main content

Advertisement

Log in

Effect of Src kinase inhibition on metastasis and tumor angiogenesis in human pancreatic cancer

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Tumor angiogenesis is a process that requires migration, proliferation, and differentiation of endothelial cells. We hypothesized that decrease in pancreatic tumor growth due to inhibition of Src activity is associated with the inability of Src kinase to trigger a network of such signaling processes, which finally leads to endothelial cell death and angiogenesis-restricted tumor dormancy. The therapeutic efficacy of Src kinase inhibitor AZM475271 was tested in nude mice orthotopically xenografted with L3.6pl pancreatic carcinoma cells. No liver metastases and peritoneal carcinosis were detected and a significant effect on the average pancreatic tumor burden was observed following treatment with AZM475271, which in turn correlated with a decrease in cell proliferation and an increase in apoptotic endothelial cells. AZM475271 was shown to significantly inhibit migration of human umbilical vein endothelial cells in an in vitro Boyden Chamber cell migration assay. In a rat aortic ring assay we could demonstrate as well inhibition of endothelial cell migration and sprouting following therapy with Src kinase inhibitor at similar doses. The most conclusive anti-angiogenic activity of AZM475271 was demonstrated in vivo (mouse corneal micropocket assay) by showing a marked inhibition of basic fibroblast growth factor-induced neovascularization in response to systemic administration of AZM475271. Furthermore, we could show reduced proliferation of HUVECs determined with the TACS MTT Cell Viability Assay Kit. The blockade of Src kinase significantly reduced the level of VEGF in L3.6pl medium, the effect which was found also in the cell culture supernate from HUVECs. Inhibition of Src kinase by AZM475271 also showed prevention of survival signaling from VEGF and EGF receptors. Treatment with AZM475271 resulted in VEGF - dependent inhibition of tyrosine phosphorylation of FAK. HUVECs were also examined using propidium iodide staining for cell cycle analysis by FACS. Inhibition of Src kinase promoted HUVEC apoptosis in a dose-dependent manner. Taken together, our results suggest that the Src kinase inhibitor AZM475271, in addition to its effects on tumor cells, suppresses tumor growth and metastasis in vitro and in vivo potentially also by anti-angiogenic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Folkman J (1995) Tumor angiogenesis, in the molecular basis of cancer. W.B. Saunders, Philadelphia, pp 206–232

    Google Scholar 

  2. Kerbel RS (2000) Tumor angiogenesis: past, present, and the near future. Carcinogenesis 21:505–515

    Article  PubMed  CAS  Google Scholar 

  3. Pepper MS (1997) Manipulating angiogenesis. From basic science to the bedside. Arterioscler Thromb Vasc Biol 17:605–619

    PubMed  CAS  Google Scholar 

  4. Carmeliet P, Dor Y, Herbert J-M, Keshet E (1998) Role of HIV-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394:485–490

    Article  PubMed  CAS  Google Scholar 

  5. Relf M et al (1997) Expression of the angiogenic factors in human primary breast cancer and its relation to angiogenesis. Cancer Res 57:963–969

    PubMed  CAS  Google Scholar 

  6. Fukumura D et al (1998) Tumor induction of VEGF promoter activity in stromal cells. Cell 94:715–725

    Article  PubMed  CAS  Google Scholar 

  7. Mukhadopathyay D, Tsiokas L, Zhou XM, Foster D, Brugge JS, Sukhatme VP (1995) Hypoxic induction of human vascular endothelial growth factor expression through c-Src activation. Nature 375:577–581

    Article  Google Scholar 

  8. Jiang BH, Semenza GL (1997) V-Src induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and anolase 1: involvement of HIV-1 in tumor progression. Cancer Res 57:5328–5335

    PubMed  CAS  Google Scholar 

  9. Kerbel RS, Rak J (1998) Establishing a link between oncogenes and tumor angiogenesis. Mol Med 4:286–295

    PubMed  CAS  Google Scholar 

  10. Okada F, Kerbel RS (1998) Impact of oncogenes in tumor angiogenesis: mutant K-ras up-regulation of VEGF/vascular permeability factor is necessary, but not sufficient for tumorigenicity of human colorectal carcinoma cells. Proc Natl Acad Sci USA 95:3609–3614

    Article  PubMed  CAS  Google Scholar 

  11. Kypta RM, Goldberg Y, Ulug ET, Courtneidge SA (1990) Association between the PDGF receptor and members of the Src family of tyrosine kinases. Cell 62:481–492

    Article  PubMed  CAS  Google Scholar 

  12. Arbiser JL, Folkman J (1997) Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc Natl Acad Sci USA 94:861–866

    Article  PubMed  CAS  Google Scholar 

  13. Verbeek BS, Vroom TM, Adriaansen-Slot SS, Ottenhoff-Kallf AE, Geertzema JG, Hennipman A, Rijksen G (1996) c-Src protein expression is increased in human breast cancer. An immunohistochemical and biochemical analysis. J Pathol 180:383–388

    Article  PubMed  CAS  Google Scholar 

  14. Egan C, Pang A, Durda D, Cheng HC, Wang JH, Fujita DJ (1999) Activation of Src in human breast tumor cell lines: elevated levels of phosphotyrosine phosphatase activity that preferentially recognizes the Src carboxy terminal negative regulatory tyrosine 530. Oncogene 18:1227–1237

    Article  PubMed  CAS  Google Scholar 

  15. Bolen JB, Veillette A, Schwartz AM, DeSeau V, Rosen N (1987) Activation of pp60c-Src protein kinase activity in human colon carcinoma. Proc Natl Acad Sci USA 84:2251–2255

    Article  PubMed  CAS  Google Scholar 

  16. Cartwright CA, Meisler AI, Eckhart W (1990) Activation of the pp60c-Src protein kinase is an early event in colonic carcinogenesis. Proc Natl Acad Sci USA 87:558–562

    Article  PubMed  CAS  Google Scholar 

  17. Irby RB, Mao W, Coppola D, Kang J, Loubeau JM, Trudeau W, Karl R, Fujita DJ, Jove R, Yeatman TJ (1999) Activating Src mutation in a subset of advanced human colon cancers. Nat Genet 21:187–190

    Article  PubMed  CAS  Google Scholar 

  18. Lutz MP, Esser IB, Flossmann-Kast BB, Vogelmann R, Luhrs H, Friess H, Buchler MW, Adler G (1998) Overexpression and activation of the tyrosine kinase Src in human pancreatic carcinoma. Biochem Biophys Res Commun 243:503–508

    Article  PubMed  CAS  Google Scholar 

  19. Visser CJ, Rijksen G, Woutersen RA, de Weger RA (1996) Increased immunoreactivity and protein tyrosine kinase activity of the protooncogene pp60c-Src in preneoplastic lesions in rat pancreas. Lab Invest 74:2–11

    PubMed  CAS  Google Scholar 

  20. Alonso G, Koegl M, Mazurenko N, Courtneidge SA (1995) Sequence requirements for binding of Src family tyrosine kinases to activated growth factor receptors. J Biol Chem 270:9840–9848

    Article  PubMed  CAS  Google Scholar 

  21. Belsches-Jablonski AP, Biscardi JS, Peavy DR, Tice DA, Romney DA, Parsons SJ (2001) Src family kinases and HER2 interactions in human breast cancer cell growth and survival. Oncogene 20:1465–1475

    Article  PubMed  CAS  Google Scholar 

  22. Paul MK, Mukhopadhyay AK (2004) Tyrosine kinase – role and significance in cancer. Int J Med Sci 1(2):101–115

    PubMed  CAS  Google Scholar 

  23. Andreev J, Galisteo ML, Kranenburg O, Logan SK, Chiu ES, Okigaki M, Cary LA, Moolenaar WH, Schlessinger J (2001) Src and Pyk2 mediate G-protein-coupled receptor activation of epidermal growth factor receptor (EGFR) but are not required for coupling to the mitogen-activated protein (MAP) kinase signaling cascade. J Biol Chem 276:20130–20135

    Article  PubMed  CAS  Google Scholar 

  24. Simeonova PP, Wang S, Hulderman T, Luster MI (2002) c-Src-dependent activation of the epidermal growth factor receptor and mitogen-activated protein kinase pathway by arsenic. Role in carcinogenesis. J Biol Chem 277(4):2945–2950

    Article  PubMed  CAS  Google Scholar 

  25. Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, Cheresh DA (1999) Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 4:915–924

    Article  PubMed  CAS  Google Scholar 

  26. Sato M, Tanaka T, Maeno T, Sando Y, Suga T, Maeno Y, Sato H, Nagai R, Kurabayashi M (2002) Inducible expression of endothelial PAS domain protein-1 by hypoxia in human lung adenocarcinoma A549 cells. Role of Src family kinases-dependent pathway. Am J Respir Cell Mol Biol 26(1):127–134

    PubMed  CAS  Google Scholar 

  27. Fujioka S, Yoshida K, Yanagisawa S et al (2002) Angiogenesis in pancreatic carcinoma: thymidine phosphorylase expression in stromal cells and intratumoral microvessel density as independent predictors of overall and relapse-free survival. Cancer 92:1788–1797

    Article  Google Scholar 

  28. Stipa F, Lucandri G, Limiti MR et al (2002) Angiogenesis as a prognostic indicator in pancreatic ductal adenocarcinoma. Anticancer Res 22:445–449

    PubMed  CAS  Google Scholar 

  29. Kuehn R, Lelkes PI, Bloechle C, Niendorf A, Izbicki JR (1999) Angiogenesis, angiogenic growth factors, and cell adhesion molecules are upregulated in chronic pancreatic diseases: angiogenesis in chronic pancreatitis, and in pancreatic cancer. Pancreas 18:96–103

    Article  PubMed  CAS  Google Scholar 

  30. Baker CH, Solorzano CC, Fidler IJ (2002) Blockage of vascular endothelial growth factor receptor and epidermal growth factor receptor signaling for therapy of metastatic human pancreatic cancer. Cancer Res 62:1996–2003

    PubMed  CAS  Google Scholar 

  31. Bruns CJ, Harbison MT, Kuniyasu H, Eue I, Fidler IJ (1999) In vivo selection and characterization of metastatic variants from human pancreatic adenocarcinoma by using orthotopic implantation in nude mice. Neoplasia 1:50–62

    Article  PubMed  CAS  Google Scholar 

  32. Bruns CJ, Solorzano CC, Harbison MT, Ozawa S, Tsan R, Fan D, Abbruzzese J, Traxler P, Buchdunger E, Radinsky R, Fidler IJ (2000) Blockade of the epidermal growth factor receptor signaling by a novel tyrosine kinase inhibitor leads to apoptosis of endothelial cells and therapy of human pancreatic carcinoma. Cancer Res 60(11):2926–2935

    PubMed  CAS  Google Scholar 

  33. Nicosia RF, Ottineri AA (1990) Growth of microvessels in serum-free matrix culture of rat aorta: a quantitative assay of angiogenesis in vitro. Lab Invest 63:115–122

    PubMed  CAS  Google Scholar 

  34. Kenyon BM, Voest EE, Chen CC, Flynn E, Folkman J, D’Amato RJ (1996) A model of angiogenesis in the mouse cornea. Invest Ophthalmol Vis Sci 37(8):1625–1632

    PubMed  CAS  Google Scholar 

  35. Lu Y, Yu Q, Liu JH et al (2003) Src family protein-tyrosine kinases alter the function of PTEN to regulate phosphatidylinositol 3-kinase/AKT cascades. J Biol Chem 278:40057–40066

    Article  PubMed  CAS  Google Scholar 

  36. Parsons JT, Martin KH, Slack JK, Taylor JM, Weed SA (2000) Focal adhesion kinase: a regulator of focal adhesion dynamics and cell movement. Oncogene 19(49):5606–5613

    Article  PubMed  CAS  Google Scholar 

  37. Calalb MB, Polte TR, Hanks SK (1995) Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol Cell Biol 15(2):954–963

    PubMed  CAS  Google Scholar 

  38. Gasparini G (1999) The rationale and future potential of angiogenesis inhibitors in neoplasia. Drugs 58:17–38

    Article  PubMed  CAS  Google Scholar 

  39. Kerbel RS (1997) A cancer therapy resistant to resistance. Nature 390:335–336

    Article  PubMed  CAS  Google Scholar 

  40. Kumar S, Ghellal A, Li C, Byrne G, Haboubi N, Wang JM, Bundred N (1999) Breast carcinoma: vascular density determined using CD105 antibody correlates with tumor prognosis. Cancer Res 59:856–861

    PubMed  CAS  Google Scholar 

  41. Fontanini G, Vignati S, Bigini D, Lucchi M, Mussi A, Basolo F, Angeletti CA, Bevilacqua G (1996) Neoangiogenesis: a putative marker of malignancy in non-small-cell lung cancer (NSCLC) development. Int J Cancer 67:615–619

    Article  PubMed  CAS  Google Scholar 

  42. Tanigawa N, Amaya H, Matsumura M, Lu C, Kitaoka A, Matsuyama K, Muraoka R (1997) Tumor angiogenesis and mode of metastasis in patients with colorectal cancer. Cancer Res 57:1043–1046

    PubMed  CAS  Google Scholar 

  43. Tanigawa N, Amaya H, Matsumura M, Shimomatsuya T (1997) Correlation between expression of vascular endothelial growth factor and tumor vascularity, and patient outcome in human gastric carcinoma. J Clin Oncol 15:826–832

    PubMed  CAS  Google Scholar 

  44. Yezhelyev M, Koehl G, Guba M, Brabletz T, Jauch KW, Ryan A, Barge A, Green T, Fennell M, Bruns CJ (2004) Inhibition of SRC tyrosine kinase as treatment for human pancreatic cancer growing orthotopically in nude mice. Clin Cancer Res 10(23):8028–8036

    Article  PubMed  CAS  Google Scholar 

  45. Kleespies A, Jauch KW, Bruns CJ (2006) Tyrosine kinase inhibitors and gemcitabine: new treatment options in pancreatic cancer? Drug Resist Updat 9(1–2):1–18

    Article  PubMed  CAS  Google Scholar 

  46. Ito H, Gardner-Thorpe J, Zinner MJ, Ashley SW, Whang EE (2003) Inhibition of tyrosine kinase Src suppresses pancreatic cancer invasiveness. Surgery 134(2):221–226

    Article  PubMed  Google Scholar 

  47. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE (2004) Inhibition of SRC tyrosine kinase impairs inherent and acquired gemcitabine resistance in human pancreatic adenocarcinoma cells. Clin Cancer Res 10(7):2307–2318

    Article  PubMed  CAS  Google Scholar 

  48. Ellis LM, Staley CA, Liu W et al (1998) Down-regulation of vascular endothelial growth factor in a human colon carcinoma cell line transfected with an antisense expression vector specific for c-Src. J Biol Chem 273:1052–1057

    Article  PubMed  CAS  Google Scholar 

  49. Schlessinger J (2000) New roles for Src kinases in control of cell survival and angiogenesis. Cell 100:293–296

    Article  PubMed  CAS  Google Scholar 

  50. Frame M (2002) Src in cancer: deregulation and consequences for cell behavior. Biochem Biophys Acta 1062:114–130

    Google Scholar 

  51. Fidler IJ, Ellis LM (1994) The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell 79:185–188

    Article  PubMed  CAS  Google Scholar 

  52. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other diseases. Nat Med 1:27–31

    Article  PubMed  CAS  Google Scholar 

  53. Brooks PC, Stromblad S, Sanders LC, von Schalscha TL, Aimes RT, Stetler-Stevenson WG, Quigley JP, Cheresh DA (1996) Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85(5):683–693

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Sabine Schrepfer, Martin Luckner und Michael Brückel for their excellent technical assistance. This research was supported by a grant of the clinical research group KFO 128/1-1 of the Deutsche Forschungsgemeinschaft (DFG), the Wilhelm-Sander-Stiftung (Nr. 2003.133.1) and the research grant BR 1614/3-1of the Deutsche Forschungsgemeinschaft (DFG). This report includes data by Ivan Ischenko in fulfillment of the requirements for his doctoral thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Ischenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ischenko, I., Guba, M., Yezhelyev, M. et al. Effect of Src kinase inhibition on metastasis and tumor angiogenesis in human pancreatic cancer. Angiogenesis 10, 167–182 (2007). https://doi.org/10.1007/s10456-007-9071-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-007-9071-3

Keywords

Navigation