Skip to main content
Log in

Genome-Wide Association for Fear Conditioning in an Advanced Intercross Mouse Line

  • Original Research
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Fear conditioning (FC) may provide a useful model for some components of post-traumatic stress disorder (PTSD). We used a C57BL/6J × DBA/2J F2 intercross (n = 620) and a C57BL/6J × DBA/2J F8 advanced intercross line (n = 567) to fine-map quantitative trait loci (QTL) associated with FC. We conducted an integrated genome-wide association analysis in QTLRel and identified five highly significant QTL affecting freezing to context as well as four highly significant QTL associated with freezing to cue. The average percent decrease in QTL width between the F2 and the integrated analysis was 59.2%. Next, we exploited bioinformatic sequence and expression data to identify candidate genes based on the existence of non-synonymous coding polymorphisms and/or expression QTLs. We identified numerous candidate genes that have been previously implicated in either fear learning in animal models (Bcl2, Btg2, Dbi, Gabr1b, Lypd1, Pam and Rgs14) or PTSD in humans (Gabra2, Oprm1 and Trkb); other identified genes may represent novel findings. The integration of F2 and AIL data maintains the advantages of studying FC in model organisms while significantly improving resolution over previous approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amstadter AB, Nugent NR, Koenen KC (2009) Genetics of PTSD: fear conditioning as a model for future research. Psychiatr Am 39:358–367

    Article  Google Scholar 

  • Blechert J, Michael T, Vriends N, Margraf J, Wilhelm FH (2005) Fear conditioning in posttraumatic stress disorder: evidence for delayed extinction of autonomic, experiential, and behavioural responses. Psychol Med 35:791–806

    Article  Google Scholar 

  • Brigman JL, Mathur P, Lu L, Williams RW, Holmes A (2009) Genetic relationship between anxiety-related and fear-related behaviors in BXD recombinant inbred mice. Behav Pharmacol 20:204–209

    Article  PubMed  Google Scholar 

  • Bush DEA, Sotres-Bayon F, LeDoux JE (2007) Individual differences in fear: isolating fear reactivity and fear recovery phenotypes. J Trauma Stress 20:413–422

    Article  PubMed  Google Scholar 

  • Caldarone B, Saavedra C, Tartaglia K, Wehner JM, Dudek BC, Flaherty L (1997) Quantitative trait loci analysis affecting contextual conditioning in mice. Nat Genet 17:335–337

    Article  PubMed  Google Scholar 

  • Carey G (1990) Genes, fears, phobias and phobic disorders. J Couns Dev 68:628–632

    Article  Google Scholar 

  • Cazorla M, Premont J, Mann A, Girard N, Kellendonk C, Rognan D (2011a) Identification of a low-molecular weight TrkB antagonist with anxiolytic and antidepressant activity in mice. J Clin Invest 121:1846–1857

    Article  PubMed  Google Scholar 

  • Cazorla M, Arrang JM, Premont J (2011b) Pharmacological characterization of six trkB antibodies reveals a novel class of functional agents for the study of the BDNF receptor. Br J Pharmacol 162:947–960

    Article  PubMed  Google Scholar 

  • Cheng R, Lim JE, Samocha KE, Sokoloff G, Abney M, Skol AD, Palmer AA (2010) Genome-wide association studies and the problem of relatedness among advanced intercross lines and other highly recombinant populations. Genetics 185:1033–1044

    Article  PubMed  Google Scholar 

  • Cheng R, Abney M, Palmer AA, Skol AD (2011) QTLRel: an R package for genome-wide association studies in which relatedness is a concern. BMC Genet 12:66

    Article  PubMed  Google Scholar 

  • Chesler EJ, Lu L, Wan J, Williams RW, Manly KF (2004) WebQTL: rapid exploratory analysis of gene expression and genetic networks for brain and behavior. Nat Neurosci 7:485–486

    Article  PubMed  Google Scholar 

  • Chesler EJ, Lu L, Shou S, Qu Y, Gu J, Wang J, Hsu HC, Mountz JD, Baldwin NE, Langston MA, Threadgill DW, Manly KF, Williams RW (2005) Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 37:233–242

    Article  PubMed  Google Scholar 

  • Chhatwal JP, Myers KM, Ressler KJ, Davis M (2005) Regulation of gephyrin and GABAA receptor binding within the amygdala after fear acquisition and extinction. J Neurosci 25:502–506

    Article  PubMed  Google Scholar 

  • Ciobanu DC, Lu L, Mozhui K, Wang X, Jagalur M, Morris JA, Taylor WL, Dietz K, Simon P, Williams RW (2010) Detection, validation, and downstream analysis of allelic variation in gene expression. Genetics 184:119–128

    Article  PubMed  Google Scholar 

  • Ciocchi S, Herry C, Grenier F, Wolff SB, Letzkus JJ, Vlachos I, Ehrlich I, Sprengel R, Deisseroth K, Stadler MB, Muller C, Luthi A (2010) Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468:277–282

    Article  PubMed  Google Scholar 

  • Dell’osso L, Carmassi C, Del Debbio A, Dell’osso MC, Bianchi C, da Pozzo E, Origlia N, Domenici L, Massimetti G, Marazziti D, Piccinni A (2009) Brain-derived neurotrophic factor plasma levels in patients suffering from post-traumatic stress disorder. Prog Neuropsychopharmacol Biol Psychiatry 33:899–902

    Article  PubMed  Google Scholar 

  • Ding J, Han F, Shi Y (2010) Single-prolonged stress induces apoptosis in the amygdala in a rat model of post-traumatic stress disorder. J Psychiatr Res 44:48–55

    Article  PubMed  Google Scholar 

  • Fanselow MS, LeDoux JE (1999) Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron 23:155–184

    Article  Google Scholar 

  • Farioli-Vecchioli S, Araulli D, Costanzi M, Leonardi L, Cina I, Micheli L, Nutini M, Longone P, Oh SP, Cestari V, Tirone F (2009) Impaired terminal differentiation of hippocampal granule neurons and defective contextual memory n PC3/Tis21 knockout mice. PLoS One 4:e8339

    Article  PubMed  Google Scholar 

  • Flint J (2011) Mapping quantitative traits and strategies to find quantitative trait genes. Methods 53:163–174

    Article  PubMed  Google Scholar 

  • Frielingsdorf H, Bath KG, Soliman F, Difed J, Casey BJ, Lee FS (2010) Variant brain-derived neurotrophic factor Val66Met endophenotypes: implications for posttraumatic stress disorder. Ann NY Acad Sci 1208:150–157

    Article  PubMed  Google Scholar 

  • Gaier ED, Rodriquiz RM, Ma XM, Sivaramakrishnan S, Bousquet-Moore D, Wetsel WC, Eipper BA, Mains RE (2010) Haploinsufficiency in peptidylglycine alpha-amidating monooxygenase leads to altered synaptic transmission in the amygdala and impaired emotional responses. J Neurosci 30:13656–13669

    Article  PubMed  Google Scholar 

  • Givalois L, Marmigere F, Rage F, Ixart G, Arancibia S, Tapia-Arancibia L (2001) Immobilization stress rapidly and differentially modulates BDNF and TrkB mRNA expression in the pituitary gland of adult male rats. Neuroendocrinology 74:148–159

    Article  PubMed  Google Scholar 

  • Glover H (1993) A preliminary trial of nalmefene for the treatment of emotional numbing in combat veterans with post-traumatic stress disorder. Isr J Psychiatry Relat Sci 30:255–263

    PubMed  Google Scholar 

  • Good AJ, Westbrook RF (1995) Effects of a microinjection of morphine into the amygdala on the acquisition and expression of conditioned fear and hypoalgesia in rats. Behav Neurosci 109:631–641

    Article  PubMed  Google Scholar 

  • Grillon C, Dierker L, Merikangas KR (1998) Fear-potentiated startle in adolescent offspring of parents with anxiety disorders. Biol Psychiatry 44:990–997

    Article  PubMed  Google Scholar 

  • Hettema JM, Annas P, Neale MC, Kendler KD, Fredrikson M (2003) A twin study of the genetics of fear conditioning. Arch Gen Psychiatry 60:702–708

    Article  PubMed  Google Scholar 

  • Hitzemann R, Reed C, Malmanger B, Lawler M, Hitzemann B, Cunningham B, McWeeney S, Belknap J, Harrington C, Buck K, Phillips T, Crabbe J (2004) On the integration of alcohol-related quantitative trait loci and gene expression analyses. Alcohol Clin Exp Res 28:1437–1448

    Article  PubMed  Google Scholar 

  • Hofstetter JR, Hitzemann RJ, Belknap JK, Walter NAR, McWeeney SK, Mayeda AR (2008) Characterization of the quantitative trait locus for haloperidol-induced catalepsy on distal mouse chromosome 1. Genes Brain Behav 7:214–223

    Article  PubMed  Google Scholar 

  • Irvine EE, Vernon J, Giese KP (2005) AlphaCaMKII autophosphorylation contributes to rapid learning but is not necessary for memory. Nat Neurosci 8:411–412

    PubMed  Google Scholar 

  • Johnson LR, LeDoux JE (2004) The anatomy of fear: microcircuits of the lateral amygdala. In: Gorman JM (ed) Fear and anxiety: the benefits of translational research. APPA Press, Washington, pp 227–250

    Google Scholar 

  • Johnson LR, McGuire J, Lazarus R, Palmer AA (2011) Pavlovian fear memory circuits and phenotype models of PTSD. Neuropsychopharmacology, Jul 19 [Epub ahead of Print]

  • Jovanovic T, Ressler KJ (2010) How the neurocircuitry and genetics of fear inhibition may inform our understanding of PTSD. Am J Psychiatry 167:648–662

    Article  PubMed  Google Scholar 

  • Katsura M, Mohri Y, Shuto K, Tsuijimura A, Ukai M, Ohkma S (2002) Psychological stress, but not physical stress, causes increase in diazepam binding inhibitor (DBI) mRNA expression in mouse brains. Brain Res Mol Brain Res 104:103–109

    Article  PubMed  Google Scholar 

  • Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B, Heger A, Agam A, Slater G, Goodson M, Furlotte NA, Eskin E, Nellaker C, Whitley H, Cleak J, Janowitz D, Hernandez-Pliego P, Edwards A, Belgard TG, Oliver PL, McIntyre RE, Bhomra A, Nicod J, Gan X, Yuan W, van der Weyden L, Steward CA, Bala S, Stalker J, Mott R, Durbin R, Jackson IJ, Czechanski A, Guerra-Assuncao JA, Donahue LR, Reinholdt LG, Payseur BA, Ponting CP, Birney E, Flint J, Adams DJ (2011) Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477:289–294

    Article  PubMed  Google Scholar 

  • Kozlovsky N, Matar MA, Kaplan Z, Kotler M, Zohar J, Cohen H (2007) Long-term down-regulation of BDNF mRNA in rat hippocampal CA1 subregion correlates with PTSD-like behavioural stress response. Int J Neuropsychopharmacol 10:741–758

    Article  PubMed  Google Scholar 

  • Kurumaji A, Ito T, Ishii S, Nishikawa T (2008) Effects of FG7142 and immobilization stress on the gene expression in the neocortex of mice. Neurosci Res 62:155–159

    Article  PubMed  Google Scholar 

  • LaBar KS, LeDoux JE, Spencer D, Phelps EA (1995) Impaired fear conditioning following unilateral temporal lobectomy in humans. J Neurosci 15:5879–5891

    Google Scholar 

  • Layton B, Krikorian R (2002) Memory mechanisms in posttraumatic stress disorder. J Neuropsychiatry Clin Neurosci 14:254–261

    Article  PubMed  Google Scholar 

  • LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    Article  PubMed  Google Scholar 

  • Lee SE, Simons SB, Heldt SA, Zhao M, Schroeder JP, Vellano CP, Cowan DP, Ramineni S, Yates CK, Feng Y, Smith Y, Sweatt JD, Weinshenker D, Ressler KJ, Dudek SM, Hepler JR (2010) RGS14 is a natural suppressor of both synaptic plasticity in CA2 neurons and hippocampal-based learning and memory. Proc Natl Acad Sci USA 107:16994–16998

    Article  PubMed  Google Scholar 

  • Li H, Deng H (2010) Systems genetics, bioinformatics and eQTL mapping. Genetica 138:915–924

    Article  PubMed  Google Scholar 

  • Li X, Han F, Liu D, Shi Y (2010) Changes of Bax, Bcl-2 and apoptosis in hippocampus in the rat model of post-traumatic stress disorder. Neurol Res 32:579–586

    Article  PubMed  Google Scholar 

  • Liberzon I, Taylor SF, Phan KL, Britton JC, Fig LM, Bueller JA, Koeppe RA, Zubieta JK (2007) Altered central micro-opioid receptor binding after psychological trauma. Biol Psychiatry 61:1030–1038

    Article  PubMed  Google Scholar 

  • Lionikas A, Cheng R, Lim JE, Palmer AA, Blizard DA (2010) Fine-mapping of muscle weight QTL in LG/J and SM/J intercrosses. Physiol Genomics 42A:33–38

    Article  PubMed  Google Scholar 

  • Lipsky RH, Marini AM (2007) Brain-derived neurotrophic factor in neuronal survival and behavior-related plasticity. Ann NY Acad Sci 1122:130–143

    Article  PubMed  Google Scholar 

  • Liu H, Wang HT, Han F, Shi YX (2011) Activity of 5-HT1A receptor is involved in neuronal apoptosis of the amygdala in a rat model of post-traumatic stress disorder. Mol Med Report 4:291–295

    Article  PubMed  Google Scholar 

  • Musumeci G, Sciarretta C, Rodriguez-Moreno A, Al Banchabouchi M, Negrete-Diaz V, Costanzi M, Berno V, Egorov AV, von Bohlen Und Halbach O, Cestari V, Delgado-Garcia JM, Minichiello L (2009) TrkB modulates fear learning and amygdalar synaptic plasticity by specific docking sites. J Neurosci 29:10131–10143

    Article  PubMed  Google Scholar 

  • Nelson EC, Agrawal A, Pergadia ML, Lynskey MT, Todorov AA, Wang JC, Todd RD, Martin NG, Heath AC, Goate AM, Montgomery GW, Madden PA (2009) Association of childhood trauma exposure and GABRA2 polymorphisms with risk of posttraumatic stress disorder in adults. Mol Psychiatry 14:234–235

    Article  PubMed  Google Scholar 

  • Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ (2010) Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet 6:e1000888

    Article  PubMed  Google Scholar 

  • Orr SP, Metzger LJ, Lasko NB, Macklin ML, Peri T, Pitman RK (2000) De novo conditioning in trauma-exposed individuals with and without posttraumatic stress disorder. J Abnorm Psychol 109:290–298

    Article  PubMed  Google Scholar 

  • Overall RW, Kempermann G, Peirce J, Lu L, Goldowitz D, Gage FH, Goodwin S, Smit AB, Airey DC, Rosen GD, Schalkwyk LC, Sutter TR, Nowakowski RS, Whatley S, Williams RW (2009) Genetics of the hippocampal transcriptome in mouse: a systematic survey and online neurogenomics resource. Front Neurosci 3:55

    PubMed  Google Scholar 

  • Owen EH, Logue SF, Rasmussen DL, Wehner JM (1997a) Assessment of learning by the Morris water task and fear conditioning in inbred mouse strains and F1 hybrids: implications of genetic background for single gene mutations and quantitative trait loci analysis. Neuroscience 80:1087–1099

    Article  PubMed  Google Scholar 

  • Owen EH, Christensen SC, Paylor R, Wehner JM (1997b) Identification of quantitative trait loci involved in contextual and auditory-cued fear conditioning in BXD recombinant inbred strains. Behav Neurosci 111:292–300

    Article  PubMed  Google Scholar 

  • Parker CC, Palmer AA (2011) Dark matter: are mice the solution to missing heritability? Front Gene 2:32. doi:10.3389/fgene.2011.00032

    Article  Google Scholar 

  • Parker CC, Cheng R, Sokoloff G, Lim JE, Skol AD, Abney M, Palmer AA (2011a) Fine-mapping alleles for body weight in LG/J × SM/J F2 and F34 advanced intercross lines. Mamm Genome 22:563–571

    Article  PubMed  Google Scholar 

  • Parker CC, Cheng R, Sokoloff G, Palmer AA (2011b) Genome-wide association for methamphetamine sensitivity in an advanced intercross mouse line. Genes Brain Behav, Oct 27. doi:10.1111/j.1601-183X.2011.00747.x [Epub ahead of print]

  • Peri T, Ben-Shakhar G, Orr SP, Shalev AY (2000) Psychophysiologic assessment of aversive conditioning in posttraumatic stress disorder. Biol Psychiatry 47:512–519

    Article  PubMed  Google Scholar 

  • Peters LL, Robledo RF, Bult CJ, Churchill GA, Paigen BJ, Svenson KL (2007) The mouse as a model for human biology: a resource guide for complex trait analysis. Nat Rev Genet 8:58–69

    Article  PubMed  Google Scholar 

  • Petkov PM, Ding Y, Cassell MA, Zhang W, Wagner G, Sargent EE, Asquith S, Crew V, Johnson KA, Robinson P, Scott VE, Wiles MV (2004) An efficient SNP system for mouse genome scanning and elucidating strain relationships. Genome Res 9:1806–1811

    Article  Google Scholar 

  • Pitman RK, van der Kolk BA, Orr SP, Greenberg MS (1990) Naloxone-reversible analgesic response to combat-related stimuli in posttraumatic stress disorder: a pilot study. Arch Gen Psychiatry 47:541–544

    Article  PubMed  Google Scholar 

  • Ponder CA, Munoz M, Gilliam TC, Palmer AA (2007a) Genetic architecture of fear conditioning in chromosome substitution strains: relationship to measures of innate (unlearned) anxiety-like behavior. Mamm Genome 18:221–228

    Article  PubMed  Google Scholar 

  • Ponder CA, Kliethermes CL, Drew MR, Muller J, Das K, Risbrough VB, Crabbe JC, Gilliam TC, Palmer AA (2007b) Selection for contextual fear conditioning affects anxiety-like behaviors and gene expression. Genes Brain Behav 6:736–749

    Article  PubMed  Google Scholar 

  • Ponder CA, Huded CP, Munoz MB, Gulden FO, Gilliam TC, Palmer AA (2008) Rapid selection response for contextual fear conditioning in a cross between C57BL/6J and A/J: behavioral, QTL and gene expression analysis. Behav Genet 38:277–291

    Article  PubMed  Google Scholar 

  • Radcliffe RA, Lowe MV, Wehner JM (2000) Confirmation of contextual fear conditioning QTLs by short-term selection. Behav Genet 30:183–191

    Article  PubMed  Google Scholar 

  • Radcliffe RA, Lee MJ, Williams RW (2006) Prediction of cis-QTLs in a pair of inbred mouse strains with the use of expression and haplotype data from public databases. Mamm Genome 17:629–642

    Article  PubMed  Google Scholar 

  • Richardson MP, Strange BA, Dolan RJ (2004) Encoding of emotional memories depends on amygdala and hippocampus and their interactions. Nat Neurosci 7:278–285

    Article  PubMed  Google Scholar 

  • Samocha KE, Lim JE, Cheng R, Sokoloff G, Palmer AA (2010) Fine mapping of QTL for prepulse inhibition in LG/J and SM/J mice using F(2) and advanced intercross lines. Genes Brain Behav 9:759–767

    Article  PubMed  Google Scholar 

  • Sherrin T, Blank T, Saravana R, Rayner M, Spiess J, Todorovic C (2009) Region specific gene expression profile in mouse brain after chronic corticotropin releasing factor receptor 1 activation: the novel role for diazepam binding inhibitor in contextual fear conditioning. Neuroscience 162:14–22

    Article  PubMed  Google Scholar 

  • Sokoloff G, Parker CC, Lim JE, Palmer AA (2011) Anxiety and fear in a cross of C57BL/6J and DBA/2J mice: mapping overlapping and independent QTL for related traits. Genes Brain Behav 10:604–614

    Article  PubMed  Google Scholar 

  • Soliman F, Glatt CE, Bath KG, Levita L, Jones RM, Pattwell SS, Jing D, Tottenham N, Amso D, Somerville LH, Voss HU, Glover G, Ballon DJ, Liston C, Teslovich T, Van Kempen T, Lee FS, Casey BJ (2010) A genetic variant BDNF polymorphism alters extinction learning in both mouse and human. Science 327:863–866

    Article  PubMed  Google Scholar 

  • Stork O, Ji FY, Obata K (2002) Reduction of extracellular GABA in the mouse amygdala during and following confrontation with a conditioned fear stimulus. Neurosci Lett 327:138–142

    Article  PubMed  Google Scholar 

  • Takei S, Morinobu S, Yamamoto S, Fuchikami M, Matsumoto T, Yamawaki S (2011) Enhanced hippocampal BDNF/TrkB signaling in response to fear conditioning in an animal model of posttraumatic stress disorder. J Psychiatr Res 45:460–468

    Article  PubMed  Google Scholar 

  • Talbot CJ, Radcliffe RA, Fullerton J, Hitzemann R, Wehner JM, Flint J (2003) Fine scale mapping of a genetic locus for conditioned fear. Mamm Genome 14:223–230

    Article  PubMed  Google Scholar 

  • Tekinay AB, Nong Y, Miwa JM, Lieberam I, Ibanez-Tallon I, Greengard P, Heintz N (2009) A role for LYNX2 in anxiety-related behavior. Proc Natl Acad Sci USA 106:4477–4482

    Article  PubMed  Google Scholar 

  • Wang J, Williams RW, Manly KF (2003) WebQTL: web-based complex trait analysis. Neuroinformatics 1:299–308

    Article  PubMed  Google Scholar 

  • Wehner JM, Radcliffe RA, Rosmann ST, Christensen SC, Rasmussen DL, Fulker DW, Wiles M (1997) Quantitative trait locus analysis of contextual fear conditioning in mice. Nat Genet 17:331–334

    Article  PubMed  Google Scholar 

  • Wilson YM, Brodnicki TC, Lawrence AJ, Murphy M (2011) Congenic mouse strains enable discrimination of genetic determinants contributing to fear and fear memory. Behav Genet 41:278–287

    Article  PubMed  Google Scholar 

  • Yalcin B, Wong K, Agam A, Goodson M, Keane TM, Gan X, Nellaker C, Goodstadt L, Nicod J, Bhomra A, Hernandez-Pliego P, Whitley H, Cleak J, Dutton R, Janowitz D, Mott R, Adams DJ, Flint J (2011) Sequence-based characterization of structural variation in the mouse genome. Nature 477:326–329

    Article  PubMed  Google Scholar 

  • Yang H, Bell TA, Churchill GA, Pardo-Manuel de Villena F (2007) On the subspecific origin of the laboratory mouse. Nat Genet 39:1100–1107

    Article  PubMed  Google Scholar 

  • Yang H, Wang JR, Didion JP, Buus RJ, Bell TA, Welsh CE, Bonhomme F, Yu AH, Nachman MW, Pialek J, Tucker P, Boursot P, McMillan L, Churchill GA, de Villena FP (2011) Subspecific origin and haplotype diversity in the laboratory mouse. Nat Genet 43:648–655

    Article  PubMed  Google Scholar 

  • Zhang H, Ozbay F, Lappalainen J, Kranzler HR, van Dyck CH, Charney DS, Price LH, Southwick S, Yang BZ, Rasmussen A, Gelernter J (2006) Brain derived neurotrophic factor (BDNF) gene variants and Alzheimer’s disease, affective disorders, posttraumatic stress disorder, schizophrenia, and substance dependence. Am J Med Genet B Neuropsychiatr Genet 141B:387–393

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jackie Lim, Ryan Walters, and Garrett Birkhoff for their assistance in behavioral testing. Access to amygdala microarray data for the BXD strains was provided by Drs. Khyobeni Mozhui and Rob Williams. The authors would like to acknowledge GeneNetwork (http://www.genenetwork.org) for providing bioinformatic tools and public data that have contributed to this manuscript. This work was supported by NIH grants R01MH079103, R21DA024845, R01DA021336 (AAP), and T32DA07255 (CCP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham A. Palmer.

Additional information

Edited by Tamara Phillips.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10519_2011_9524_MOESM1_ESM.pdf

Supplemental Table 1. eQTLs for freezing to tone day 1. Table displays the gene symbol, chromosome and Mb location, mean expression levels, peak LOD score, and peak LOD location for each eQTL. (PDF 66 kb)

10519_2011_9524_MOESM2_ESM.pdf

Supplemental Table 2. eQTLs for freezing to context day 2. Table displays the gene symbol, chromosome and Mb location, mean expression levels, peak LOD score, and peak LOD location for each eQTL. (PDF 217 kb)

10519_2011_9524_MOESM3_ESM.pdf

Supplemental Table 3. eQTLs for freezing to cue day 3. Table displays the gene symbol, chromosome and Mb location, mean expression levels, peak LOD score, and peak LOD location for each eQTL. (PDF 126 kb)

10519_2011_9524_MOESM4_ESM.pdf

Supplemental Table 4. Non-synonymous coding SNPs in freezing to tone day 1 QTLs. Table displays the chromosome, bp position, gene name, gene symbol, and number of coding SNPs present. Symbols represent the presence of SNPS resulting in the following mutations: #=stop-lost, *=stop-gain, $=essential splice site. (PDF 215 kb)

10519_2011_9524_MOESM5_ESM.pdf

Supplemental Table 5. Non-synonymous coding SNPs in freezing to context QTLs. Table displays the chromosome, bp position, gene name, gene symbol, and number of coding SNPs present. Symbols represent the presence of SNPS resulting in the following mutations: #=stop-lost, *=stop-gain, $=essential splice site. (PDF 367 kb)

10519_2011_9524_MOESM6_ESM.pdf

Supplemental Table 6. Non-synonymous coding SNPs in freezing to cue QTLs. Table displays the chromosome, gene name, gene symbol, and number of coding SNPs present. Symbols represent the presence of SNPS resulting in the following mutations: #=stop-lost, *=stop-gain, $=essential splice site. (PDF 299 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, C.C., Sokoloff, G., Cheng, R. et al. Genome-Wide Association for Fear Conditioning in an Advanced Intercross Mouse Line. Behav Genet 42, 437–448 (2012). https://doi.org/10.1007/s10519-011-9524-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-011-9524-8

Keywords

Navigation