Skip to main content
Log in

A structural perspective on copper uptake in eukaryotes

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Over a decade ago, genetic studies identified a family of small integral membrane proteins, commonly referred to as copper transporters (CTRs) that are both required and sufficient for cellular copper uptake in a yeast genetic complementation assay. We recently used electron crystallography to determine a projection density map of the human high affinity transporter hCTR1 embedded into a lipid bilayer. At 6 Å resolution, this first glimpse of the structure revealed that hCTR1 is trimeric and possesses the type of radial symmetry that traditionally has been associated with the structure of certain ion channels such as potassium or gap junction channels. Representative for this particular type of architecture, a region of low protein density at the center of the trimer is consistent with the existence of a copper permeable pore along the center three-fold axis of the trimer. In this contribution, we will briefly discuss how recent structure–function studies correlate with the projection density map, and provide a perspective with respect to the cellular uptake of other transition metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abajian C, Yatsunyk LA, Ramirez BE, Rosenzweig AC (2004) Yeast cox17 solution structure and Copper(I) binding. J Biol Chem 279:53584–52592

    Article  PubMed  CAS  Google Scholar 

  • Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615

    Article  PubMed  CAS  Google Scholar 

  • Accardi A, Miller C (2004) Secondary active transport mediated by a prokaryotic homologue of ClC Cl-channels. Nature 427:803–807

    Article  PubMed  CAS  Google Scholar 

  • Aller SG, Eng ET, De Feo CJ, Unger VM (2004) Eukaryotic CTR copper uptake transporters require two faces of the third transmembrane domain for helix packing, oligomerization, and function. J Biol Chem 279:53435–53441

    Article  PubMed  CAS  Google Scholar 

  • Aller SG, Unger VM (2006) Projection structure of the human copper transporter CTR1 at 6-A resolution reveals a compact trimer with a novel channel-like architecture. Proc Natl Acad Sci USA 103:3627–3632

    Article  PubMed  CAS  Google Scholar 

  • Beaudoin J, Laliberté J, Labbé S (2006) Functional dissection of Ctr4 and Ctr5 amino-terminal regions reveals motifs with redundant roles in copper transport. Microbiology 152:209–222

    Article  PubMed  CAS  Google Scholar 

  • Brewer GJ (2003) Copper in medicine. Curr Opin Chem Biol 7:207–212

    Article  PubMed  CAS  Google Scholar 

  • Cox DW, Moore SD (2002) Copper transporting P-type ATPases and human disease. J Bioenerg Biomembr 34:333–338

    Article  PubMed  CAS  Google Scholar 

  • Chang G, Spencer RH, Lee AT, Barclay MT, Rees DC (1998) Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282:2220–2226

    Article  PubMed  CAS  Google Scholar 

  • Dancis A, Haile D, Yuan DS, Klausner RD (1994a) The Saccharomyces cerevisiae copper transport protein (Ctr1p). Biochemical characterization, regulation by copper, and physiologic role in copper uptake. J Biol Chem 269:25660–25667

    CAS  Google Scholar 

  • Dancis A, Yuan DS, Haile D et al (1994b) Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell 76:393–402

    Article  CAS  Google Scholar 

  • Dix DR, Bridgham JT, Broderius MA, Byersdorfer CA, Eide DJ (1994) The FET4 gene encodes the low affinity Fe(II) transport protein of Saccharomyces cerevisiae. J Biol Chem 269:26092–26099

    PubMed  CAS  Google Scholar 

  • Djinovic K, Gatti G, Coda A et al (1991) Structure solution and molecular dynamics refinement of the yeast Cu, Zn enzyme superoxide dismutase. Acta Crystallogr B 47:918–927

    Google Scholar 

  • Dmitriev O, Tsivkovskii R, Abildgaard F, Morgan CT, Markley JL, Lutsenko S (2006) Solution structure of the Wilson ATPase N-domain in the presence of ATP. Proc Natl Acad Sci USA 103:5302”5307

    Google Scholar 

  • Doyle DA, Morais Cabral J, Pfuetzner RA et al (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  PubMed  CAS  Google Scholar 

  • Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R (2002) X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415:287–294

    Article  PubMed  CAS  Google Scholar 

  • Dutzler R, Campbell EB, MacKinnon R (2003) Gating the selectivity filter in ClC chloride channels. Science 300:108–112

    Article  PubMed  CAS  Google Scholar 

  • Edwards MD, Li Y, Kim S et al (2005) Pivotal role of the glycine-rich TM3 helix in gating the MscS mechanosensitive channel. Nat Struct Mol Biol 12:113–119

    Article  PubMed  CAS  Google Scholar 

  • Eisses JF, Kaplan JH (2002) Molecular characterization of hCTR1, the human copper uptake protein. J Biol Chem 277:29162–29171

    Article  PubMed  CAS  Google Scholar 

  • Eisses JF, Kaplan JH (2005) The mechanism of copper uptake mediated by human CTR1: a mutational analysis. J Biol Chem 280:37159–37168

    Article  PubMed  CAS  Google Scholar 

  • Gunshin H, Mackenzie B, Berger UV et al (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Smith K, Lee J, Thiele DJ, Petris MJ (2004) Identification of methionine-rich clusters that regulate copper-stimulated endocytosis of the human Ctr1 copper transporter. J Biol Chem 279:17428–17433

    Article  PubMed  CAS  Google Scholar 

  • Holzer AK, Samimi G, Katano K et al (2004) The copper influx transporter human copper transport protein 1 regulates the uptake of cisplatin in human ovarian carcinoma cells. Mol Pharmacol 66:817–823

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Lemieux MJ, Song J, Auer M, Wang DN (2003) Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301:616–620

    Article  PubMed  CAS  Google Scholar 

  • Huffman DL, O’Halloran TV (2001) Function, structure, and mechanism of intracellular copper trafficking proteins. Annu Rev Biochem 70:677–701

    Article  PubMed  CAS  Google Scholar 

  • Hunte C, Screpanti E, Venturi M, Rimon A, Padan E, Michel H (2005) Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435:1197–1202

    Article  PubMed  CAS  Google Scholar 

  • Ishida S, Lee J, Thiele DJ, Herskowitz I (2002) Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci USA 99:14298–14302

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) The open pore conformation of potassium channels. Nature 417:523–526

    Article  PubMed  CAS  Google Scholar 

  • Kambe T, Yamaguchi-Iwai Y, Sasaki R, Nagao M (2004) Overview of mammalian zinc transporters. Cell Mol Life Sci 61:49–68

    Article  PubMed  CAS  Google Scholar 

  • Khademi S, O’Connell J 3rd, Remis J, Robles-Colmenares Y, Miercke LJ, Stroud RM (2004) Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 A. Science 305:1587–1594

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Jeon TJ, Oberai A, Yang D, Schmidt JJ, Bowie JU (2005) Transmembrane glycine zippers: physiological and pathological roles in membrane proteins. Proc Natl Acad Sci USA 102:14278–14283

    Article  PubMed  CAS  Google Scholar 

  • Klomp AE, Juijn JA, van der Gun LT, van den Berg IE, Berger R, Klomp LW (2003) The N-terminus of the human copper transporter 1 (hCTR1) is localized extracellularly, and interacts with itself. Biochem J 370:881–889

    Article  PubMed  CAS  Google Scholar 

  • Klomp AE, Tops BB, Van Denberg IE, Berger R, Klomp LW (2002) Biochemical characterization and subcellular localization of human copper transporter 1 (hCTR1). Biochem J 364:497–505

    Article  PubMed  CAS  Google Scholar 

  • Lamb AL, Torres AS, O’Halloran TV, Rosenzweig AC (2001) Heterodimeric structure of superoxide dismutase in complex with its metallochaperone. Nat Struct Biol 8:751–755

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Peña MM, Nose Y, Thiele DJ (2002) Biochemical characterization of the human copper transporter Ctr1. J Biol Chem 277:4380–4387

    Article  PubMed  CAS  Google Scholar 

  • Lin X, Okuda T, Holzer A, Howell SB (2002) The copper transporter CTR1 regulates cisplatin uptake in Saccharomyces cerevisiae. Mol Pharmacol 62:1154–1159

    Article  PubMed  CAS  Google Scholar 

  • Llanos RM, Mercer JF (2002) The molecular basis of copper homeostasis copper-related disorders. DNA Cell Biol 21:259–270

    Article  PubMed  CAS  Google Scholar 

  • Lutsenko S, Efremov RG, Tsivkovskii R, Walker JM (2002) Human copper-transporting ATPase ATP7B (the Wilson’s disease protein): biochemical properties and regulation. J Bioenerg Biomembr 34:351–362

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie KR, Prestegard JH, Engelman DM (1997) A transmembrane helix dimer: structure and implications. Science 276:131–133

    Article  PubMed  CAS  Google Scholar 

  • Mercer JF (2001) The molecular basis of copper-transport diseases. Trends Mol Med 7:64–69

    Article  PubMed  CAS  Google Scholar 

  • Miller C (2006) ClC chloride channels viewed through a transporter lens. Nature 440:484–489

    Article  PubMed  CAS  Google Scholar 

  • Mirza O, Guan L, Verner G, Iwata S, Kaback HR (2006) Structural evidence for induced fit and a mechanism for sugar/H+ symport in LacY. EMBO J 25:1177–1183

    Article  PubMed  CAS  Google Scholar 

  • Murata K, Mitsuoka K, Hirai T et al (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605

    Article  PubMed  CAS  Google Scholar 

  • Ooi CE, Rabinovich E, Dancis A, Bonifacino JS, Klausner RD (1996) Copper-dependent degradation of the Saccharomyces cerevisiae plasma membrane copper transporter Ctr1p in the apparent absence of endocytosis. EMBO J 15:3515–3523

    PubMed  CAS  Google Scholar 

  • Peña MM, Puig S, Thiele DJ (2000) Characterization of the Saccharomyces cerevisiae high affinity copper transporter Ctr3. J Biol Chem 275:33244–33251

    Article  PubMed  Google Scholar 

  • Petris MJ, Smith K, Lee J, Thiele DJ (2003) Copper-stimulated endocytosis and degradation of the human copper transporter, hCtr1. J Biol Chem 278:9639–9646

    Article  PubMed  CAS  Google Scholar 

  • Puig S, Lee J, Lau M, Thiele DJ (2002) Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake. J Biol Chem 277:26021–26030

    Article  PubMed  CAS  Google Scholar 

  • Puig S, Thiele DJ (2002) Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol 6:171–180

    Article  PubMed  CAS  Google Scholar 

  • Rees EM, Thiele DJ (2004) From aging to virulence: forging connections through the study of copper homeostasis in eukaryotic microorganisms. Curr Opin Microbiol 7:175–184

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig AC (2002) Metallochaperones: bind and deliver. Chem Biol 9:673–677

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig AC, Huffman DL, Hou MY, Wernimont AK, Pufahl RA, O’Halloran T (1999) Crystal structure of the Atx1 metallochaperone protein at 1.02 A resolution. Structure 7:605–617

    Article  PubMed  CAS  Google Scholar 

  • Safaei R, Howell SB (2005) Copper transporters regulate the cellular pharmacology and sensitivity to Pt drugs. Crit Rev Oncol Hematol 53:13–23

    Article  PubMed  Google Scholar 

  • Senes A, Gerstein M, Engelman DM (2000) Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions. J Mol Biol 296:921–936

    Article  PubMed  CAS  Google Scholar 

  • Senes A, Ubarretxena-Belandia I, Engelman DM (2001) The Calpha –H···O hydrogen bond: a determinant of stability and specificity in transmembrane helix interactions. Proc Natl Acad Sci USA 98:9056–9061

    Article  PubMed  CAS  Google Scholar 

  • Spencer RH, Rees DC (2002) The alpha-helix and the organization and gating of channels. Annu Rev Biophys Biomol Struct 31:207–233

    Article  PubMed  CAS  Google Scholar 

  • Tsukihara T, Aoyama H, Yamashita E et al (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science 272:1136–1144

    Article  PubMed  CAS  Google Scholar 

  • Ubarretxena-Belandia I, Baldwin JM, Schuldiner S, Tate CG (2003) Three-dimensional structure of the bacterial multidrug transporter EmrE shows it is an asymmetric homodimer. EMBO J 22:6175–6181

    Article  PubMed  CAS  Google Scholar 

  • Voskoboinik I, Camakaris J (2002) Menkes copper-translocating P-type ATPase (ATP7A): biochemical and cell biology properties, and role in Menkes disease. J Bioenerg Biomembr 34:363–371

    Article  PubMed  CAS  Google Scholar 

  • Waggoner DJ, Bartnikas TB, Gitlin JD (1999) The role of copper in neurodegenerative disease. Neurobiol Dis 6:221–230

    Article  PubMed  CAS  Google Scholar 

  • Xiao Z, Loughlin F, George GN, Howlett GJ, Wedd AG (2004) C-terminal domain of the membrane copper transporter Ctr1 from Saccharomyces cerevisiae binds four Cu(I) ions as a cuprous-thiolate polynuclear cluster: sub-femtomolar Cu(I) affinity of three proteins involved in copper trafficking. J Am Chem Soc 126:3081–3090

    Article  PubMed  CAS  Google Scholar 

  • Xiao Z, Wedd AG (2002) A C-terminal domain of the membrane copper pump Ctr1 exchanges copper(I) with the copper chaperone Atx1. Chem Commun (Camb) 21:588”589

    Google Scholar 

  • Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/Cl- dependent neurotransmitter transporters. Nature 437:215–223

    Article  PubMed  CAS  Google Scholar 

  • Yin Y, He X, Szewczyk P, Nguyen T, Chang G (2006) Structure of the multidrug transporter EmrD from Escherichia coli. Science 312:741–744

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Thiele DJ (2001) Identification of a novel high affinity copper transport complex in the fission yeast Schizosaccharomyces pombe. J Biol Chem 276:20529–20535

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Ribbon diagrams were produced using the UCSF Chimera package from the Computer Graphics Laboratory, University of California, San Francisco (NIH P42 RR-01081). This work was funded by PHS grants GM07223 (CDF, SGA), NS56825 (CDF), NS45550 (SGA), and GM071590 (VMU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinzenz M. Unger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Feo, C.J., Aller, S.G. & Unger, V.M. A structural perspective on copper uptake in eukaryotes. Biometals 20, 705–716 (2007). https://doi.org/10.1007/s10534-006-9054-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-006-9054-7

Keywords

Navigation