Skip to main content

Advertisement

Log in

Myeloid-derived suppressor cells in breast cancer

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Myeloid-derived suppressor cells (MDSCs) are a population of immature myeloid cells defined by their suppressive actions on immune cells such as T cells, dendritic cells, and natural killer cells. MDSCs typically are positive for the markers CD33 and CD11b but express low levels of HLADR in humans. In mice, MDSCs are typically positive for both CD11b and Gr1. These cells exert their suppressive activity on the immune system via the production of reactive oxygen species, arginase, and cytokines. These factors subsequently inhibit the activity of multiple protein targets such as the T cell receptor, STAT1, and indoleamine-pyrrole 2,3-dioxygenase. The numbers of MDSCs tend to increase with cancer burden while inhibiting MDSCs improves disease outcome in murine models. MDSCs also inhibit immune cancer therapeutics. In light of the poor prognosis of metastatic breast cancer in women and the correlation of increasing levels of MDSCs with increasing disease burden, the purposes of this review are to (1) discuss why MDSCs may be important in breast cancer, (2) describe model systems used to study MDSCs in vitro and in vivo, (3) discuss mechanisms involved in MDSC induction/function in breast cancer, and (4) present pre-clinical and clinical studies that explore modulation of the MDSC–immune system interaction in breast cancer. MDSCs inhibit the host immune response in breast cancer patients and diminishing MDSC actions may improve therapeutic outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62(1):10–29

  2. Soliman H (2010) Developing an effective breast cancer vaccine Cancer control. J Moffitt Cancer Cent 17(3):183–190

    Google Scholar 

  3. Soliman H (2013) Immunotherapy strategies in the treatment of breast cancer Cancer control. J Moffitt Cancer Cent 20(1):17–21

    Google Scholar 

  4. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4):253–268

    Article  PubMed  CAS  Google Scholar 

  5. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174

    Article  PubMed  CAS  Google Scholar 

  6. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58(1):49–59

    Article  PubMed  CAS  Google Scholar 

  7. Almand B, Resser JR, Lindman B, Nadaf S, Clark JI, Kwon ED, Carbone DP, Gabrilovich DI (2000) Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 6(5):1755–1766

    PubMed  CAS  Google Scholar 

  8. Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, Carbone DP, Gabrilovich DI (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166(1):678–689

    PubMed  CAS  Google Scholar 

  9. Cole S, Montero A, Garret-Mayer E, Onicescu G, Vandenberg T, Hutchens S, Diaz-Montero C (2009) Elevated circulating myeloid derived suppressor cells (MDSC) are associated with inferior overall survival (OS) and correlate with circulating tumor cells (CTC) in patients with metastatic breast cancer. In: Thirty-second annual CTRC-AACR San Antonio breast cancer symposium: 2009. Cancer Research, San Antonio

  10. Montero AJ, Diaz-Montero CM, Deutsch YE, Hurley J, Koniaris LG, Rumboldt T, Yasir S, Jorda M, Garret-Mayer E, Avisar E et al (2012) Phase 2 study of neoadjuvant treatment with NOV-002 in combination with doxorubicin and cyclophosphamide followed by docetaxel in patients with HER-2 negative clinical stage II-IIIc breast cancer. Breast Cancer Res Treat 132(1):215–223

    Article  PubMed  CAS  Google Scholar 

  11. Wagner KU (2004) Models of breast cancer: quo vadis, animal modeling? Breast Cancer Res 6(1):31–38

    Article  PubMed  CAS  Google Scholar 

  12. Imaoka T, Nishimura M, Iizuka D, Daino K, Takabatake T, Okamoto M, Kakinuma S, Shimada Y (2009) Radiation-induced mammary carcinogenesis in rodent models: what’s different from chemical carcinogenesis? J Radiat Res 50(4):281–293

    Article  PubMed  CAS  Google Scholar 

  13. Fantozzi A, Christofori G (2006) Mouse models of breast cancer metastasis. Breast Cancer Res 8(4):212

    Article  PubMed  Google Scholar 

  14. Weinstein EJ, Kitsberg DI, Leder P (2000) A mouse model for breast cancer induced by amplification and overexpression of the neu promoter and transgene. Mol Med 6(1):4–16

    PubMed  CAS  Google Scholar 

  15. Habibi M, Kmieciak M, Graham L, Morales JK, Bear HD, Manjili MH (2009) Radiofrequency thermal ablation of breast tumors combined with intralesional administration of IL-7 and IL-15 augments anti-tumor immune responses and inhibits tumor development and metastasis. Breast Cancer Res Treat 114(3):423–431

    Article  PubMed  Google Scholar 

  16. Smith C, Chang MY, Parker KH, Beury DW, DuHadaway JB, Flick HE, Boulden J, Sutanto-Ward E, Soler AP, Laury-Kleintop LD et al (2012) IDO is a nodal pathogenic driver of lung cancer and metastasis development. Cancer Discov 2(8):722–735

    Article  PubMed  CAS  Google Scholar 

  17. Hennighausen L (2000) Mouse models for breast cancer. Breast Cancer Res 2(1):2–7

    Article  PubMed  CAS  Google Scholar 

  18. Kim JB, O’Hare MJ, Stein R (2004) Models of breast cancer: is merging human and animal models the future? Breast Cancer Res 6(1):22–30

    Article  PubMed  CAS  Google Scholar 

  19. Vargo-Gogola T, Rosen JM (2007) Modelling breast cancer: one size does not fit all. Nat Rev Cancer 7(9):659–672

    Article  PubMed  CAS  Google Scholar 

  20. Aslakson CJ, Miller FR (1992) Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 52(6):1399–1405

    PubMed  CAS  Google Scholar 

  21. Boutte AM, McDonald WH, Shyr Y, Yang L, Lin PC (2011) Characterization of the MDSC proteome associated with metastatic murine mammary tumors using label-free mass spectrometry and shotgun proteomics. PLoS One 6(8):e22446

    Article  PubMed  CAS  Google Scholar 

  22. Donkor MK, Lahue E, Hoke TA, Shafer LR, Coskun U, Solheim JC, Gulen D, Bishay J, Talmadge JE (2009) Mammary tumor heterogeneity in the expansion of myeloid-derived suppressor cells. Int Immunopharmacol 9(7–8):937–948

    Article  PubMed  CAS  Google Scholar 

  23. Heppner GH, Miller FR, Shekhar PM (2000) Nontransgenic models of breast cancer. Breast Cancer Res 2(5):331–334

    Article  PubMed  CAS  Google Scholar 

  24. Le HK, Graham L, Cha E, Morales JK, Manjili MH, Bear HD (2009) Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice. Int Immunopharmacol 9(7–8):900–909

    Article  PubMed  CAS  Google Scholar 

  25. Caligiuri I, Rizzolio F, Boffo S, Giordano A, Toffoli G (2012) Critical choices for modeling breast cancer in transgenic mouse models. J Cell Physiol 227(8):2988–2991

    Article  PubMed  CAS  Google Scholar 

  26. Mundy-Bosse BL, Lesinski GB, Jaime-Ramirez AC, Benninger K, Khan M, Kuppusamy P, Guenterberg K, Kondadasula SV, Chaudhury AR, La Perle KM et al (2011) Myeloid-derived suppressor cell inhibition of the IFN response in tumor-bearing mice. Cancer Res 71(15):5101–5110

    Article  PubMed  CAS  Google Scholar 

  27. Lu T, Ramakrishnan R, Altiok S, Youn JI, Cheng P, Celis E, Pisarev V, Sherman S, Sporn MB, Gabrilovich D (2011) Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Invest 121(10):4015–4029

    Article  PubMed  CAS  Google Scholar 

  28. Solito S, Falisi E, Diaz-Montero CM, Doni A, Pinton L, Rosato A, Francescato S, Basso G, Zanovello P, Onicescu G et al (2011) A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood 118(8):2254–2265

    Article  PubMed  CAS  Google Scholar 

  29. Lechner MG, Liebertz DJ, Epstein AL (2010) Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol 185(4):2273–2284

    Article  PubMed  CAS  Google Scholar 

  30. Bruchard M, Mignot G, Derangere V, Chalmin F, Chevriaux A, Vegran F, Boireau W, Simon B, Ryffel B, Connat JL et al (2013) Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med 19(1):57–64

    Article  PubMed  CAS  Google Scholar 

  31. Lechner MG, Megiel C, Russell SM, Bingham B, Arger N, Woo T, Epstein AL (2011) Functional characterization of human Cd33+ and Cd11b+ myeloid-derived suppressor cell subsets induced from peripheral blood mononuclear cells co-cultured with a diverse set of human tumor cell lines. J Transl Med 9:90

    Article  PubMed  CAS  Google Scholar 

  32. Morales JK, Kmieciak M, Knutson KL, Bear HD, Manjili MH (2010) GM-CSF is one of the main breast tumor-derived soluble factors involved in the differentiation of CD11b-Gr1- bone marrow progenitor cells into myeloid-derived suppressor cells. Breast Cancer Res Treat 123(1):39–49

    Article  PubMed  CAS  Google Scholar 

  33. Roland CL, Lynn KD, Toombs JE, Dineen SP, Udugamasooriya DG, Brekken RA (2009) Cytokine levels correlate with immune cell infiltration after anti-VEGF therapy in preclinical mouse models of breast cancer. PLoS One 4(11):e7669

    Article  PubMed  Google Scholar 

  34. Kerkar SP, Goldszmid RS, Muranski P, Chinnasamy D, Yu Z, Reger RN, Leonardi AJ, Morgan RA, Wang E, Marincola FM et al (2011) IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. J Clin Invest 121(12):4746–4757

    Article  PubMed  CAS  Google Scholar 

  35. Steding CE, Wu ST, Zhang Y, Jeng MH, Elzey BD, Kao C (2011) The role of interleukin-12 on modulating myeloid-derived suppressor cells, increasing overall survival and reducing metastasis. Immunology 133(2):221–238

    Article  PubMed  CAS  Google Scholar 

  36. Liu Y, Lai L, Chen Q, Song Y, Xu S, Ma F, Wang X, Wang J, Yu H, Cao X et al (2012) MicroRNA-494 is required for the accumulation and functions of tumor-expanded myeloid-derived suppressor cells via targeting of PTEN. J Immunol 188(11):5500–5510

    Article  PubMed  CAS  Google Scholar 

  37. Markowitz J, Carson WE 3rd (2013) Review of S100A9 biology and its role in cancer. Biochim Biophys Acta 1835(1):100–109

    PubMed  CAS  Google Scholar 

  38. Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM, Ortiz M, Nacken W, Sorg C, Vogl T et al (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205(10):2235–2249

    Article  PubMed  CAS  Google Scholar 

  39. Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S, Srikrishna G (2008) Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol 181(7):4666–4675

    PubMed  CAS  Google Scholar 

  40. Morales JK, Kmieciak M, Graham L, Feldmesser M, Bear HD, Manjili MH (2009) Adoptive transfer of HER2/neu-specific T cells expanded with alternating gamma chain cytokines mediate tumor regression when combined with the depletion of myeloid-derived suppressor cells. Cancer Immunol Immunother 58(6):941–953

    Article  PubMed  CAS  Google Scholar 

  41. Thakur A, Schalk D, Sarkar SH, Al-Khadimi Z, Sarkar FH, Lum LG (2011) A Th1 cytokine-enriched microenvironment enhances tumor killing by activated T cells armed with bispecific antibodies and inhibits the development of myeloid-derived suppressor cells. Cancer Immunol Immunother 61(4):497–509

    Article  PubMed  Google Scholar 

  42. Walker JD, Sehgal I, Kousoulas KG (2011) Oncolytic herpes simplex virus 1 encoding 15-prostaglandin dehydrogenase mitigates immune suppression and reduces ectopic primary and metastatic breast cancer in mice. J Virol 85(14):7363–7371

    Article  PubMed  CAS  Google Scholar 

  43. Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 6(4):443–446

    Article  PubMed  CAS  Google Scholar 

  44. Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, Lehner F, Manns MP, Greten TF, Korangy F (2009) Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology 50(3):799–807

    Article  PubMed  CAS  Google Scholar 

  45. Li H, Han Y, Guo Q, Zhang M, Cao X (2009) Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol 182(1):240–249

    PubMed  CAS  Google Scholar 

  46. Melani C, Sangaletti S, Barazzetta FM, Werb Z, Colombo MP (2007) Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res 67(23):11438–11446

    Article  PubMed  CAS  Google Scholar 

  47. Zhang Y, Lv D, Kim HJ, Kurt RA, Bu W, Li Y, Ma X (2013) A novel role of hematopoietic CCL5 in promoting triple-negative mammary tumor progression by regulating generation of myeloid-derived suppressor cells. Cell Res 23(3):394–408

    Article  PubMed  CAS  Google Scholar 

  48. Ugel S, Delpozzo F, Desantis G, Papalini F, Simonato F, Sonda N, Zilio S, Bronte V (2009) Therapeutic targeting of myeloid-derived suppressor cells. Curr Opin Pharmacol 9(4):470–481

    Article  PubMed  CAS  Google Scholar 

  49. Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI (2004) Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 172(2):989–999

    PubMed  CAS  Google Scholar 

  50. Nagaraj S, Schrum AG, Cho HI, Celis E, Gabrilovich DI (2010) Mechanism of T cell tolerance induced by myeloid-derived suppressor cells. J Immunol 184(6):3106–3116

    Article  PubMed  CAS  Google Scholar 

  51. Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D, De Palma A, Mauri P, Monegal A, Rescigno M et al (2011) Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med 208(10):1949–1962

    Article  PubMed  CAS  Google Scholar 

  52. Mundy-Bosse BL, Thornton LM, Yang HC, Andersen BL, Carson WE (2011) Psychological stress is associated with altered levels of myeloid-derived suppressor cells in breast cancer patients. Cell Immunol 270(1):80–87

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge T32CA090223 (to J. Markowitz). Taylor Brooks was supported by the Pelotonia undergraduate fellowship Program. Any opinions, findings, and conclusions expressed in this material are those of the author(s) and do not necessarily reflect those of the Pelotonia Fellowship Program. We would also like to acknowledge P01CA095426.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Carson III.

Additional information

Joseph Markowitz and Robert Wesolowski are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markowitz, J., Wesolowski, R., Papenfuss, T. et al. Myeloid-derived suppressor cells in breast cancer. Breast Cancer Res Treat 140, 13–21 (2013). https://doi.org/10.1007/s10549-013-2618-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-013-2618-7

Keywords

Navigation