Skip to main content

Advertisement

Log in

Role of mitogen-activated protein kinase phosphatases (MKPs) in cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The mitogen-activated protein kinase (MAPK) phosphatases (MKPs) are a family of dual-specificity protein phosphatases that dephosphorylate both phospho-threonine and phospho-tyrosine residues in MAP kinases, including the c-Jun N-terminal protein kinase (JNK)/stress-activated protein kinase (SAPK), the p38 MAPK, and the extracellular signal-related kinase (ERK). Since phosphorylation is required for the activation of MAP kinases, dephosphorylation by MKPs inhibits MAPK activity, thereby negatively regulating MAPK signaling. It is known that deregulation of MAPK signaling is the most common alteration in human cancers. Recent studies have suggested that MKPs play an important role not only in the development of cancers, but also in the response of cancer cells to chemotherapy. Thus, understanding the roles of MKPs in the development of cancer and their impact on chemotherapy can be exploited for therapeutic benefits for the treatment of human cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Davis, R. J. (2000). Signal transduction by the JNK group of MAP kinases. Cell, 103, 239–52.

    Article  PubMed  CAS  Google Scholar 

  2. Johnson, G. L., & Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 298, 1911–912.

    Article  PubMed  CAS  Google Scholar 

  3. Pearson, G., Robinson, F., Beers Gibson, T., Xu, B., Karandikar, M., Berman, K., et al. (2001). Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions. Endocrine Reviews, 22, 153–83.

    Article  PubMed  CAS  Google Scholar 

  4. Chang, L., & Karin, M. (2001). Mammalian MAP kinase signalling cascades. Nature, 410, 37–0.

    Article  PubMed  CAS  Google Scholar 

  5. Kennedy, N. J., & Davis, R. J. (2003). Role of JNK in tumor development. Cell Cycle, 2, 199–01.

    PubMed  CAS  Google Scholar 

  6. Camps, M., Nichols, A., & Arkinstall, S. (2000). Dual specificity phosphatases: A gene family for control of MAP kinase function. FASEB Journal, 14, 6–6.

    PubMed  CAS  Google Scholar 

  7. Dickinson, R. J., & Keyse, S. M. (2006). Diverse physiological functions for dual-specificity MAP kinase phosphatases. Journal of Cell Science, 119(Pt 22), 4607–615.

    Article  PubMed  CAS  Google Scholar 

  8. Kondoh, K., & Nishida, E. (2006). Regulation of MAP kinases by MAP kinase phosphatases. Biochim Biophys Acta, 1773(8), 1227–237.

    PubMed  Google Scholar 

  9. Zhan, X. L., Wishart, M. J., & Guan, K. L. (2001). Nonreceptor tyrosine phosphatases in cellular signaling: Regulation of mitogen-activated protein kinases. Chemical Reviews, 101(8), 2477–496.

    Article  PubMed  CAS  Google Scholar 

  10. Theodosiou, A., & Ashworth, A. (2002). MAP kinase phosphatases. Genome Biology, 3(7), REVIEWS3009.

    Google Scholar 

  11. Rohan, P. J., Davis, P., Moskaluk, C. A., Kearns, M., Krutzsch, H., Siebenlist, U., et al. (1993). PAC-1: A mitogen-induced nuclear protein tyrosine phosphatase. Science, 259(5102), 1763–766.

    Article  PubMed  CAS  Google Scholar 

  12. Muda, M., Boschert, U., Smith, A., Antonsson, B., Gillieron, C., Chabert, C., et al. (1997). Molecular cloning and functional characterization of a novel mitogen-activated protein kinase phosphatase, MKP-4. Journal of Biological Chemistry, 272(8), 5141–151.

    Article  PubMed  CAS  Google Scholar 

  13. Lau, L. F., & Nathans, D. (1985). Identification of a set of genes expressed during the G0/G1 transition of cultured mouse cells. EMBO Journal, 4(12), 3145–151.

    PubMed  CAS  Google Scholar 

  14. Charles, C. H., Abler, A. S., & Lau, L. F. (1992). cDNA sequence of a growth factor-inducible immediate early gene and characterization of its encoded protein. Oncogene, 7, 187–90.

    PubMed  CAS  Google Scholar 

  15. Keyse, S. M., & Emslie, E. A. (1992). Oxidative stress and heat shock induce a human gene encoding a protein’tyrosine phosphatase. Nature, 359, 644–47.

    Article  PubMed  CAS  Google Scholar 

  16. Li, J., Gorospe, M., Hutter, D., Barnes, J., Keyse, S. M., & Liu, Y. (2001). Transcriptional induction of MKP-1 in response to stress is associated with histone H3 phosphorylation’acetylation. Molecular and Cellular Biology, 21, 8213–224.

    Article  PubMed  CAS  Google Scholar 

  17. Liu, Y., Gorospe, M., Yang, C., & Holbrook, N. J. (1995). Role of mitogen-activated protein kinase phosphatase during the cellular response to genotoxic stress. Inhibition of c-Jun N-terminal kinase activity and AP-1-dependent gene activation. Journal of Biological Chemistry, 270(15), 8377–380.

    Article  PubMed  CAS  Google Scholar 

  18. Zhou, J. Y., Liu, Y., & Wu, G. S. (2006). The role of mitogen-activated protein kinase phosphatase-1 in oxidative damage-induced cell death. Cancer Research, 66(9), 4888–894.

    Article  PubMed  CAS  Google Scholar 

  19. Wang, Z., Xu, J., Zhou, J. Y., Liu, Y., & Wu, G. S. (2006). Mitogen-activated protein kinase phosphatase-1 is required for cisplatin resistance. Cancer Research, 66(17), 8870–877.

    Article  PubMed  CAS  Google Scholar 

  20. Sun, H., Charles, C. H., Lau, L. F., & Tonks, N. K. (1993). MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo. Cell, 75, 487–93.

    Article  PubMed  CAS  Google Scholar 

  21. Noguchi, T., Metz, R., Chen, L., Mattei, M. G., Carrasco, D., & Bravo, R. (1993). Structure, mapping, and expression of erp, a growth factor-inducible gene encoding a nontransmembrane protein tyrosine phosphatase, and effect of ERP on cell growth. Molecular and Cellular Biology, 13, 5195–205.

    PubMed  CAS  Google Scholar 

  22. Franklin, C. C., & Kraft, A. S. (1997). Conditional expression of the mitogen-activated protein kinase (MAPK) phosphatase MKP-1 preferentially inhibits p38 MAPK and stress-activated protein kinase in U937 cells. Journal of Biological Chemistry, 272, 16917–6923.

    Article  PubMed  CAS  Google Scholar 

  23. Brondello, J. M., McKenzie, F. R., Sun, H., Tonks, N. K., Pouyssegur, J. (1995). Constitutive MAP kinase phosphatase (MKP-1) expression blocks G1 specific gene transcription and S-phase entry in fibroblasts. Oncogene, 10, 1895–904.

    PubMed  CAS  Google Scholar 

  24. Li, M., Zhou, J. Y., Ge, Y., Matherly, L. H., & Wu, G. S. (2003). The phosphatase MKP1 is a transcriptional target of p53 involved in cell cycle regulation. Journal of Biological Chemistry, 278, 41059–1068.

    Article  PubMed  CAS  Google Scholar 

  25. Yang, H., & Wu, G. S. (2004). p53 Transactivates the phosphatase MKP1 through both intronic and exonic p53 responsive elements. Cancer Biology and Therapy, 3(12), 1277–282.

    Article  PubMed  CAS  Google Scholar 

  26. Wu, G. S. (2004). The Functional Interactions Between the p53 and MAPK Signaling Pathways. Cancer Biology and Therapy, 3, 156–61.

    PubMed  CAS  Google Scholar 

  27. Franklin, C. C., Srikanth, S., & Kraft, A. S. (1998). Conditional expression of mitogen-activated protein kinase phosphatase-1, MKP-1, is cytoprotective against UV-induced apoptosis. Proceedings of the National Academy of Sciences, U.S.A., 95, 3014–019.

    Article  CAS  Google Scholar 

  28. Sanchez-Perez, I., Martinez-Gomariz, M., Williams, D., Keyse, S. M., & Perona, R. (2000). CL100/MKP-1 modulates JNK activation and apoptosis in response to cisplatin. Oncogene, 19, 5142–152.

    Article  PubMed  CAS  Google Scholar 

  29. Wu, J. J., & Bennett, A. M. (2005). Essential role for MAP kinase phosphatase-1 in stress-responsive MAP kinase and cell survival signaling. Journal of Biological Chemistry, 280, 16461–6466.

    Article  PubMed  CAS  Google Scholar 

  30. Chattopadhyay, S., Machado-Pinilla, R., Manguan-Garcia, C., Belda-Iniesta, C., Moratilla, C., Cejas, P., et al. (2006). MKP1/CL100 controls tumor growth and sensitivity to cisplatin in non-small-cell lung cancer. Oncogene, 25(23), 3335–345.

    Article  PubMed  CAS  Google Scholar 

  31. Dorfman, K., Carrasco, D., Gruda, M., Ryan, C., Lira, S. A., & Bravo, R. (1996). Disruption of the erp/mkp-1 gene does not affect mouse development: Normal MAP kinase activity in ERP/MKP-1-deficient fibroblasts. Oncogene, 13, 925–31.

    PubMed  CAS  Google Scholar 

  32. Wang, H. Y., Cheng, Z., & Malbon, C. C. (2003). Overexpression of mitogen-activated protein kinase phosphatases MKP1, MKP2 in human breast cancer. Cancer Letters, 191(2), 229–37.

    Article  PubMed  CAS  Google Scholar 

  33. Loda, M., Capodieci, P., Mishra, R., Yao, H., Corless, C., Grigioni, W., et al. (1996). Expression of mitogen-activated protein kinase phosphatase-1 in the early phases of human epithelial carcinogenesis. American Journal of Pathology, 149(5), 1553–564.

    PubMed  CAS  Google Scholar 

  34. Vicent, S., Garayoa, M., Lopez-Picazo, J. M., Lozano, M. D., Toledo, G., Thunnissen, F. B., et al. (2004). Mitogen-activated protein kinase phosphatase-1 is overexpressed in non-small cell lung cancer and is an independent predictor of outcome in patients. Clinical Cancer Research, 10(11), 3639–649.

    Article  PubMed  CAS  Google Scholar 

  35. Denkert, C., Schmitt, W. D., Berger, S., Reles, A., Pest, S., Siegert, A., et al. (2002). Expression of mitogen-activated protein kinase phosphatase-1 (MKP-1) in primary human ovarian carcinoma. International Journal of Cancer, 102(5), 507–13.

    Article  CAS  Google Scholar 

  36. Manzano, R. G., Montuenga, L. M., Dayton, M., Dent, P., Kinoshita, I., Vicent, S., et al. (2002). CL100 expression is down-regulated in advanced epithelial ovarian cancer and its re-expression decreases its malignant potential. Oncogene, 21(28), 4435–447.

    Article  PubMed  CAS  Google Scholar 

  37. Rauhala, H. E., Porkka, K. P., Tolonen, T. T., Martikainen, P. M., Tammela, T. L., & Visakorpi, T. (2005). Dual-specificity phosphatase 1 and serum/glucocorticoid-regulated kinase are downregulated in prostate cancer. International Journal of Cancer, 117(5), 738–45.

    Article  CAS  Google Scholar 

  38. Liao Q., Guo J., Kleeff J., Zimmermann, A., Büchler, M. W., Korc, M., et al. (2003). Down-regulation of the dual-specificity phosphatase MKP-1 suppresses tumorigenicity of pancreatic cancer cells. Gastroenterology, 124(7), 1830–845.

    Article  PubMed  CAS  Google Scholar 

  39. Tsujita, E., Taketomi, A., Gion, T., Kuroda, Y., Endo, K., Watanabe, A., et al. (2005). Suppressed MKP-1 is an independent predictor of outcome in patients with hepatocellular carcinoma. Oncology, 69(4), 342–47.

    Article  PubMed  CAS  Google Scholar 

  40. Yokoyama, A., Karasaki, H., Urushibara, N., Nomoto, K., Imai, Y., Nakamura, K., et al. (1997). The characteristic gene expressions of MAPK phosphatases 1 and 2 in hepatocarcinogenesis, rat ascites hepatoma cells, and regenerating rat liver. Biochemical and Biophysical Research Communications, 239(3), 746–51.

    Article  PubMed  CAS  Google Scholar 

  41. Bang, Y. J., Kwon, J. H., Kang, S. H., Kim, J. W., & Yang, Y. C. (1998). Increased MAPK activity and MKP-1 overexpression in human gastric adenocarcinoma. BBRC, 250(1), 43–7.

    PubMed  CAS  Google Scholar 

  42. Groom, L. A., Sneddon, A. A., Alessi, D. R., Dowd, S., & Keyse, S. M. (1996). Differential regulation of the MAP, SAP and RK/p38 kinases by Pyst1, a novel cytosolic dual-specificity phosphatase. EMBO Journal, 15(14), 3621–632.

    PubMed  CAS  Google Scholar 

  43. Muda, M., Boschert, U., Dickinson, R., Martinou, J.-C., Martinou, I., Camps, M., et al. (1996). MKP-3, a novel cytosolic protein-tyrosine phosphatase that exemplifies a new class of mitogen-activated protein kinase phosphatase. Journal of Biological Chemistry, 271(8), 4319–326.

    Article  PubMed  CAS  Google Scholar 

  44. Kawakami, Y., Rodriguez-Leon, J., Koth, C. M., Büscher, D., Itoh, T., Raya, A., et al. (2003). MKP3 mediates the cellular response to FGF8 signalling in the vertebrate limb. Nature Cell Biology, 5(6), 513–19.

    Article  PubMed  CAS  Google Scholar 

  45. Furukawa, T., Sunamura, M., Motoi, F., Matsuno, S., & Horii, A. (2003). Potential tumor suppressive pathway involving DUSP6/MKP-3 in pancreatic cancer. American Journal of Pathology, 162(6), 1807–815.

    PubMed  CAS  Google Scholar 

  46. Furukawa, T., Fujisaki, R., Yoshida, Y., Kanai, N., Sunamura, M., Abe, T., et al. (2005). Distinct progression pathways involving the dysfunction of DUSP6/MKP-3 in pancreatic intraepithelial neoplasia and intraductal papillary’mucinous neoplasms of the pancreas. Modern Pathology, 18(8), 1034–042.

    Article  PubMed  CAS  Google Scholar 

  47. Xu, S., Furukawa, T., Kanai, N., Sunamura, M., & Horii, A. (2005). Abrogation of DUSP6 by hypermethylation in human pancreatic cancer. Journal of Human Genetics, 50(4), 159–67.

    Article  PubMed  CAS  Google Scholar 

  48. Marchetti, S., Gimond, C., Roux, D., Gothie, E., Pouyssegur, J., & Pages, G. (2004). Inducible expression of a MAP kinase phosphatase-3-GFP chimera specifically blunts fibroblast growth and ras-dependent tumor formation in nude mice. Journal of Cellular Physiology, 199(3), 441–50.

    Article  PubMed  CAS  Google Scholar 

  49. Chen, H. Y., Yu, S. L., Chen, C. H., Chang, G.-C., Chen, C.-Y., Yuan, A., et al. (2007). A five-gene signature and clinical outcome in non-small-cell lung cancer. New England Journal of Medicine, 356(1), 11–0.

    Article  PubMed  CAS  Google Scholar 

  50. Givant-Horwitz, V., Davidson, B., Goderstad, J. M., Nesland, J. M., Trope, C. G., & Reich, R. (2004). The PAC-1 dual specificity phosphatase predicts poor outcome in serous ovarian carcinoma. Gynecologic Oncology, 93(2), 517–23.

    Article  PubMed  CAS  Google Scholar 

  51. Sieben, N. L., Oosting, J., Flanagan, A. M., Prat, J., Roemen,G. M. J. M., Kolkman-Uljee, S. M., et al. (2005). Differential gene expression in ovarian tumors reveals Dusp 4 and Serpina 5 as key regulators for benign behavior of serous borderline tumors. Journal of Clinical Oncology, 23(29), 7257–264.

    Article  PubMed  CAS  Google Scholar 

  52. Levy-Nissenbaum, O., Sagi-Assif, O., Kapon, D., Hantisteanu, S., Burg, T., Raanani, P., et al. (2003). Dual-specificity phosphatase Pyst2-L is constitutively highly expressed in myeloid leukemia and other malignant cells. Oncogene, 22(48), 7649–660.

    Article  PubMed  CAS  Google Scholar 

  53. Levy-Nissenbaum, O., Sagi-Assif, O., Raanani, P., Avigdor, A., Ben-Bassat, I., & Witz, I. P. (2003). Overexpression of the dual-specificity MAPK phosphatase PYST2 in acute leukemia. Cancer Letters, 199(2), 185–92.

    Article  PubMed  CAS  Google Scholar 

  54. Srikanth, S., Franklin, C. C., Duke, R. C., & Kraft, A. S. (1999). Human DU145 prostate cancer cells overexpressing mitogen-activated protein kinase phosphatase-1 are resistant to Fas ligand-induced mitochondrial perturbations and cellular apoptosis. Molecular and Cellular Biochemistry, 199, 169–78.

    Article  PubMed  CAS  Google Scholar 

  55. Orlowski, R. Z., Small, G. W., & Shi, Y. Y. (2002). Evidence that inhibition of p44/42 mitogen-activated protein kinase signaling is a factor in proteasome inhibitor-mediated apoptosis. Journal of Biological Chemistry, 277(31), 27864–7871.

    Article  PubMed  CAS  Google Scholar 

  56. Small, G. W., Shi, Y. Y., Edmund, N. A., Somasundaram, S., Moore, D. T., & Orlowski, R. Z. (2004). Evidence that mitogen-activated protein kinase phosphatase-1 induction by proteasome inhibitors plays an antiapoptotic role. Molecular Pharmacology, 66(6), 1478–490.

    Article  PubMed  CAS  Google Scholar 

  57. Wu, W., Chaudhuri, S., Brickley, D. R., Pang, D., Karrison, T., & Conzen, S. D. (2004). Microarray analysis reveals glucocorticoid-regulated survival genes that are associated with inhibition of apoptosis in breast epithelial cells. Cancer Research, 64(5), 1757–764.

    Article  PubMed  CAS  Google Scholar 

  58. Wu, W., Pew, T., Zou, M., Pang, D., & Conzen, S. D. (2005). Glucocorticoid receptor-induced MAPK phosphatase-1 (MKP-1) expression inhibits paclitaxel-associated MAPK activation and contributes to breast cancer cell survival. Journal of Biological Chemistry, 280(6), 4117–124.

    Article  PubMed  CAS  Google Scholar 

  59. Cui, Y., Parra, I., Zhang, M., Hilsenbeck, S. G., Tsimelzon, A., Furukawa, T., et al. (2006). Elevated expression of mitogen-activated protein kinase phosphatase 3 in breast tumors: A mechanism of tamoxifen resistance. Cancer Research, 66(11), 5950–959.

    Article  PubMed  CAS  Google Scholar 

  60. Vogt, A., Cooley, K. A., Brisson, M., Tarpley, M. G., Wipf, P., & Lazo, J. S. (2003). Cell-active dual specificity phosphatase inhibitors identified by high-content screening. Chemistry and Biology, 10(8), 733–42.

    Article  PubMed  CAS  Google Scholar 

  61. Lazo, J. S., Nunes, R., Skoko, J. J., Queiroz de Oliveira, P. E., Vogt, A., & Wipf, P. (2006). Novel benzofuran inhibitors of human mitogen-activated protein kinase phosphatase-1. Bioorganic & Medicinal Chemistry, 14(16), 5643–650.

    Article  CAS  Google Scholar 

  62. Vogt, A., Tamewitz, A., Skoko, J., Sikorski, R. P., Giuliano, K. A., & Lazo, J. S. (2005). The benzo[c]phenanthridine alkaloid, sanguinarine, is a selective, cell-active inhibitor of mitogen-activated protein kinase phosphatase-1. Journal of Biological Chemistry, 280(19), 19078–9086.

    Article  PubMed  CAS  Google Scholar 

  63. Arnold, D. M., Foster, C., Huryn, D. M., Lazo, J. S., Johnston,P. A., & Wipf, P. (2007). Synthesis and biological activity of a focused library of mitogen-activated protein kinase phosphatase inhibitors. Chemical Biology and Drug Design, 69(1), 23–0.

    Article  PubMed  CAS  Google Scholar 

  64. Chen, P., Li, J., Barnes, J., Kokkonen, G. C., Lee, J. C., & Liu, Y. (2002). Restraint of proinflammatory cytokine biosynthesis by mitogen-activated protein kinase phosphatase-1 in lipopolysaccharide-stimulated macrophages. Journal of Immunology, 169, 6408–416.

    CAS  Google Scholar 

  65. Wang, X., Matta, R., Shen, G., Nelin, L. D., Pei, D., & Liu, Y. (2006). Mechanism of triptolide-induced apoptosis: Effect on caspase activation and Bid cleavage and essentiality of the hydroxyl group of triptolide. Journal of Molecular Medicine, 84(5), 405–15.

    Article  PubMed  CAS  Google Scholar 

  66. Gonzalez-Santiago, L., Suarez, Y., Zarich, N., Muñoz-Alonso,M. J., Cuadrado, A., Martínez, T., et al. (2006). Aplidin induces JNK-dependent apoptosis in human breast cancer cells via alteration of glutathione homeostasis, Rac1 GTPase activation, and MKP-1 phosphatase downregulation. Cell Death and Differentiation, 13(11), 1968–981.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gen Sheng Wu.

Additional information

This paper received support from NIH grant R01 CA100073 and Elsa U. Pardee Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, G.S. Role of mitogen-activated protein kinase phosphatases (MKPs) in cancer. Cancer Metastasis Rev 26, 579–585 (2007). https://doi.org/10.1007/s10555-007-9079-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-007-9079-6

Keywords

Navigation