Skip to main content

Advertisement

Log in

Protein phosphatase 2A (PP2A), a drugable tumor suppressor in Ph1(+) leukemias

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Protein phosphatase-2A (PP2A) is one of the major cellular serine-threonine phosphatases and is involved in the regulation of cell homeostasis through the negative regulation of signaling pathways initiated by protein kinases. As several cancers are characterized by the aberrant activity of oncogenic kinases, it was not surprising that a phosphatase like PP2A has progressively been considered as a potential tumor suppressor. Indeed, multiple solid tumors (e.g. melanomas, colorectal carcinomas, lung and breast cancers) present with genetic and/or functional inactivation of different PP2A subunits and, therefore, loss of PP2A phosphatase activity towards certain substrates. Likewise, impaired PP2A phosphatase activity has been linked to B-cell chronic lymphocytic leukemia, Philadelphia-chromosome positive acute lymphoblastic leukemia and blast crisis chronic myelogenous leukemia. Remarkably, drugs such as forskolin, 1,9-dideoxy-forskolin and FTY720 which lead to PP2A activation effectively antagonize leukemogenesis in both in vitro and in vivo models of these cancers. Thus, PP2A is now in the spotlight as a highly promising drugable target for the development of a new series of anticancer agents potentially capable of overcoming drug-resistance induced in patients by continuous exposure to kinase inhibitor monotherapy. Herein, we review current knowledge of PP2A biology and function with particular emphasis on its tumor suppressor activity and possible therapeutic implications in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ALL:

acute lymphoblastic leukemia

CML:

chronic myelogenous leukemia

hnRNP:

heterogeneous nuclear ribonucleoprotein

MAPK:

mitogen activated protein kinase

Ph:

philadelphia chromosome

PP2A:

protein phosphatase 2A

References

  1. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.

    Article  PubMed  CAS  Google Scholar 

  2. Todd, R., & Wong, D. T. (1999). Oncogenes. Anticancer Research, 19(6A), 4729–4746.

    PubMed  CAS  Google Scholar 

  3. Sherr, C. J. (2004). Principles of tumor suppression. Cell, 116(2), 235–246.

    Article  PubMed  CAS  Google Scholar 

  4. Yokota, J. (2000). Tumor progression and metastasis. Carcinogenesis, 21(3), 497–503.

    Article  PubMed  CAS  Google Scholar 

  5. Hunter, T. (1995). Protein kinases and phosphatases: The yin and yang of protein phosphorylation and signaling. Cell, 80(2), 225–236.

    Article  PubMed  CAS  Google Scholar 

  6. Levine, A. J., & Broach, J. R. (1995). Oncogenes and cell proliferation. Current Opinion in Genetics & Development, 5(1), 1–4.

    Article  CAS  Google Scholar 

  7. Calabretta, B., & Perrotti, D. (2004). The biology of CML blast crisis. Blood, 103(11), 4010–4022.

    Article  PubMed  CAS  Google Scholar 

  8. Westbrook, C. A., Hooberman, A. L., Spino, C., Dodge, R. K., Larson, R. A., Davey, F., et al. (1992). Clinical significance of the BCR-ABL fusion gene in adult acute lymphoblastic leukemia: A Cancer and Leukemia Group B Study (8762). Blood, 80(12), 2983–2990.

    PubMed  CAS  Google Scholar 

  9. Tonks, N. K. (2006). Protein tyrosine phosphatases: From genes, to function, to disease. Nature Reviews Molecular Cell Biology, 7(11), 833–846.

    Article  PubMed  CAS  Google Scholar 

  10. Janssens, V., Goris, J., & Van Hoof, C. (2005). PP2A: the expected tumor suppressor. Current Opinion in Genetics & Development, 15(1), 34–41.

    Article  CAS  Google Scholar 

  11. Perrotti, D., & Neviani, P. (2006). ReSETting PP2A tumour suppressor activity in blast crisis and imatinib-resistant chronic myelogenous leukaemia. British Journal of Cancer, 95(7), 775–781.

    Article  PubMed  CAS  Google Scholar 

  12. Janssens, V., & Goris, J. (2001). Protein phosphatase 2A: A highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochemical Journal, 353(Pt 3), 417–439.

    Article  PubMed  CAS  Google Scholar 

  13. Schonthal, A. H. (2001). Role of serine/threonine protein phosphatase 2A in cancer. Cancer Letter, 170(1), 1–13.

    Article  CAS  Google Scholar 

  14. Lechward, K., Awotunde, O. S., Swiatek, W., & Muszynska, G. (2001). Protein phosphatase 2A: Variety of forms and diversity of functions. Acta Biochimica Polonica, 48(4), 921–933.

    PubMed  CAS  Google Scholar 

  15. Healy, A. M., Zolnierowicz, S., Stapleton, A. E., Goebl, M., DePaoli-Roach, A. A., & Pringle, J. R. (1991). CDC55, a Saccharomyces cerevisiae gene involved in cellular morphogenesis: Identification, characterization, and homology to the B subunit of mammalian type 2A protein phosphatase. Molecular and Cellular Biology, 11(11), 5767–5780.

    PubMed  CAS  Google Scholar 

  16. Mayer-Jaekel, R. E., Ohkura, H., Gomes, R., Sunkel, C. E., Baumgartner, S., Hemmings, B. A., et al. (1993). The 55 kd regulatory subunit of Drosophila protein phosphatase 2A is required for anaphase. Cell, 72(4), 621–633.

    Article  PubMed  CAS  Google Scholar 

  17. Schild, A., Schmidt, K., Lim, Y. A., Ke, Y., Ittner, L. M., Hemmings, B. A., et al. (2006). Altered levels of PP2A regulatory B/PR55 isoforms indicate role in neuronal differentiation. International Journal of Developmental Neuroscience, 24(7), 437–443.

    Article  PubMed  CAS  Google Scholar 

  18. Okamoto, K., Li, H., Jensen, M. R., Zhang, T., Taya, Y., Thorgeirsson, S. S., et al. (2002). Cyclin G recruits PP2A to dephosphorylate Mdm2. Molecular Cell, 9(4), 761–771.

    Article  PubMed  CAS  Google Scholar 

  19. Voorhoeve, P. M., Hijmans, E. M., & Bernards, R. (1999). Functional interaction between a novel protein phosphatase 2A regulatory subunit, PR59, and the retinoblastoma-related p107 protein. Oncogene, 18(2), 515–524.

    Article  PubMed  CAS  Google Scholar 

  20. Sontag, E. (2001). Protein phosphatase 2A: The Trojan Horse of cellular signaling. Cell Signal, 13(1), 7–16.

    Article  PubMed  CAS  Google Scholar 

  21. Sontag, E., Fedorov, S., Kamibayashi, C., Robbins, D., Cobb, M., & Mumby, M. (1993). The interaction of SV40 small tumor antigen with protein phosphatase 2A stimulates the map kinase pathway and induces cell proliferation. Cell, 75(5), 887–897.

    Article  PubMed  CAS  Google Scholar 

  22. Lee, T. H., Turck, C., & Kirschner, M. W. (1994). Inhibition of cdc2 activation by INH/PP2A. Molecular Biology of the Cell, 5(3), 323–338.

    PubMed  CAS  Google Scholar 

  23. Van Hoof, C., & Goris, J. (2003). Phosphatases in apoptosis: to be or not to be, PP2A is in the heart of the question. Biochimica et Biophysica Acta, 1640(2–3), 97–104.

    PubMed  Google Scholar 

  24. Yang, J., Fan, G. H., Wadzinski, B. E., Sakurai, H., & Richmond, A. (2001). Protein phosphatase 2A interacts with and directly dephosphorylates RelA. Journal of Biological Chemistry, 276(51), 47828–47833.

    PubMed  CAS  Google Scholar 

  25. Ivaska, J., Nissinen, L., Immonen, N., Eriksson, J. E., Kahari, V. M., & Heino, J. (2002). Integrin alpha 2 beta 1 promotes activation of protein phosphatase 2A and dephosphorylation of Akt and glycogen synthase kinase 3 beta. Molecular and Cellular Biology, 22(5), 1352–1359.

    Article  PubMed  CAS  Google Scholar 

  26. Peterson, R. T., Desai, B. N., Hardwick, J. S., & Schreiber, S. L. (1999). Protein phosphatase 2A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12-rapamycinassociated protein. Proceedings of the National Academy of Sciences of the United States of America, 96(8), 4438–4442.

    Article  PubMed  CAS  Google Scholar 

  27. Montagne, J., Stewart, M. J., Stocker, H., Hafen, E., Kozma, S. C., & Thomas, G. (1999). Drosophila S6 kinase: a regulator of cell size. Science, 285(5436), 2126–2129.

    Article  PubMed  CAS  Google Scholar 

  28. Hornstein, E., Tang, H., & Meyuhas, O. (2001). Mitogenic and nutritional signals are transduced into translational efficiency of TOP mRNAs. Cold Spring Harbor Symposia on Quantitative Biology, 66, 477–484.

    Article  PubMed  CAS  Google Scholar 

  29. Li, X., Yost, H. J., Virshup, D. M., & Seeling, J. M. (2001). Protein phosphatase 2A and its B56 regulatory subunit inhibit Wnt signaling in Xenopus. European Molecular Biology Organization Journal, 20(15), 4122–4131.

    CAS  Google Scholar 

  30. Sontag, J. M., & Sontag, E. (2006). Regulation of cell adhesion by PP2A and SV40 small tumor antigen: An important link to cell transformation. Cellular and Molecular Life Sciences, 63(24), 2979–2991.

    Article  PubMed  CAS  Google Scholar 

  31. Xu, Y., Xing, Y., Chen, Y., Chao, Y., Lin, Z., Fan, E., et al. (2006). Structure of the protein phosphatase 2A holoenzyme. Cell, 127(6), 1239–1251.

    Article  PubMed  CAS  Google Scholar 

  32. Longin, S., Zwaenepoel, K., Louis, J. V., Dilworth, S., Goris, J., & Janssens, V. (2007). Selection of protein phosphatase 2A regulatory subunits is mediated by the C-terminus of the catalytic subunit. Journal of Biological Chemistry, 282, 26971–26980.

    Article  PubMed  CAS  Google Scholar 

  33. Li, M., & Damuni, Z. (1998). I1PP2A and I2PP2A. Two potent protein phosphatase 2A-specific inhibitor proteins. Methods in Molecular Biology, 93, 59–66.

    PubMed  CAS  Google Scholar 

  34. Kovacech, B., Kontsekova, E., Zilka, N., Novak, P., Skrabana, R., Filipcik, P., et al. (2007). A novel monoclonal antibody DC63 reveals that inhibitor 1 of protein phosphatase 2A is preferentially nuclearly localised in human brain. Federation of European Biochemical Societies Letters, 581(4), 617–622.

    PubMed  CAS  Google Scholar 

  35. Li, M., Makkinje, A., & Damuni, Z. (1996). The myeloid leukemia-associated protein SET is a potent inhibitor of protein phosphatase 2A. Journal of Biological Chemistry, 271(19), 11059–11062.

    Article  PubMed  CAS  Google Scholar 

  36. Adachi, Y., Pavlakis, G. N., & Copeland, T. D. (1994). Identification and characterization of SET, a nuclear phosphoprotein encoded by the translocation break point in acute undifferentiated leukemia. Journal of Biological Chemistry, 269(3), 2258–2262.

    PubMed  CAS  Google Scholar 

  37. Adler, H. T., Nallaseth, F. S., Walter, G., & Tkachuk, D. C. (1997). HRX leukemic fusion proteins form a heterocomplex with the leukemia-associated protein SET and protein phosphatase 2A. Journal of Biological Chemistry, 272(45), 28407–28414.

    Article  PubMed  CAS  Google Scholar 

  38. Neviani, P., Santhanam, R., Trotta, R., Notari, M., Blaser, B. W., Liu, S., et al. (2005). The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein. Cancer Cell, 8(5), 355–368.

    Article  PubMed  CAS  Google Scholar 

  39. Neviani, P., Santhanam, R., Oaks, J. J., Eiring, A. M., Notari, M., Blaser, B. W., et al. (2007). FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphocytic leukemia. Journal of Clinical Investigation, 117(9), 2408–2421.

    Article  PubMed  CAS  Google Scholar 

  40. Trotta, R., Ciarlariello, D., Col, J. D., Allard 2nd, J., Neviani, P., Santhanam, R., et al. (2007). The PP2A inhibitor SET regulates natural killer cell IFN-{gamma} production. Journal of Experimental Medicine, 204, 2397–2405.

    Article  PubMed  CAS  Google Scholar 

  41. Bialojan, C., & Takai, A. (1988). Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochemical Journal, 256(1), 283–290.

    PubMed  CAS  Google Scholar 

  42. Arroyo, J. D., & Hahn, W. C. (2005). Involvement of PP2A in viral and cellular transformation. Oncogene, 24(52), 7746–7755.

    Article  PubMed  CAS  Google Scholar 

  43. Junttila, M. R., Puustinen, P., Niemela, M., Ahola, R., Arnold, H., Bottzauw, T., et al. (2007). CIP2A inhibits PP2A in human malignancies. Cell, 130(1), 51–62.

    Article  PubMed  CAS  Google Scholar 

  44. Sablina, A. A., Chen, W., Arroyo, J. D., Corral, L., Hector, M., Bulmer, S. E., et al. (2007). The tumor suppressor PP2A Abeta regulates the RalA GTPase. Cell, 129(5), 969–982.

    Article  PubMed  CAS  Google Scholar 

  45. Francia, G., Poulsom, R., Hanby, A. M., Mitchell, S. D., Williams, G., McKee, P., et al. (1999). Identification by differential display of a protein phosphatase-2A regulatory subunit preferentially expressed in malignant melanoma cells. International Journal of Cancer, 82(5), 709–713.

    Article  CAS  Google Scholar 

  46. Ito, A., Kataoka, T. R., Watanabe, M., Nishiyama, K., Mazaki, Y., Sabe, H., et al. (2000). A truncated isoform of the PP2A B56 subunit promotes cell motility through paxillin phosphorylation. European Molecular Biology Organization Journal, 19(4), 562–571.

    CAS  Google Scholar 

  47. Chen, W., Possemato, R., Campbell, K. T., Plattner, C. A., Pallas, D. C., & Hahn, W. C. (2004). Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell, 5(2), 127–136.

    Article  PubMed  CAS  Google Scholar 

  48. Ito, A., Koma, Y., Watabe, K., Nagano, T., Endo, Y., Nojima, H., et al. (2003). A truncated isoform of the protein phosphatase 2A B56gamma regulatory subunit may promote genetic instability and cause tumor progression. American Journal of Pathology, 162(1), 81–91.

    PubMed  CAS  Google Scholar 

  49. Silverstein, A. M., Barrow, C. A., Davis, A. J., & Mumby, M. C. (2002). Actions of PP2A on the MAP kinase pathway and apoptosis are mediated by distinct regulatory subunits. Proceedings of the National Academy of Sciences of the United States of America, 99(7), 4221–4226.

    Article  PubMed  CAS  Google Scholar 

  50. Li, X., Scuderi, A., Letsou, A., & Virshup, D. M. (2002). B56-associated protein phosphatase 2A is required for survival and protects from apoptosis in Drosophila melanogaster. Molecular and Cellular Biology, 22(11), 3674–3684.

    Article  PubMed  CAS  Google Scholar 

  51. Calin, G. A., di Iasio, M. G., Caprini, E., Vorechovsky, I., Natali, P. G., Sozzi, G., et al. (2000). Low frequency of alterations of the alpha (PPP2R1A) and beta (PPP2R1B) isoforms of the subunit A of the serine-threonine phosphatase 2A in human neoplasms. Oncogene, 19(9), 1191–1195.

    Article  PubMed  CAS  Google Scholar 

  52. Ruediger, R., Pham, H. T., & Walter, G. (2001). Alterations in protein phosphatase 2A subunit interaction in human carcinomas of the lung and colon with mutations in the A beta subunit gene. Oncogene, 20(15), 1892–1899.

    Article  PubMed  CAS  Google Scholar 

  53. Takagi, Y., Futamura, M., Yamaguchi, K., Aoki, S., Takahashi, T., & Saji, S. (2000). Alterations of the PPP2R1B gene located at 11q23 in human colorectal cancers. Gut, 47(2), 268–2671.

    Article  PubMed  CAS  Google Scholar 

  54. Wang, S. S., Esplin, E. D., Li, J. L., Huang, L., Gazdar, A., Minna, J., et al. (1998). Alterations of the PPP2R1B gene in human lung and colon cancer. Science, 282(5387), 284–287.

    Article  PubMed  CAS  Google Scholar 

  55. Esplin, E. D., Ramos, P., Martinez, B., Tomlinson, G. E., Mumby, M. C., & Evans, G. A. (2006). The glycine 90 to aspartate alteration in the Abeta subunit of PP2A (PPP2R1B) associates with breast cancer and causes a deficit in protein function. Genes Chromosomes Cancer, 45(2), 182–190.

    Article  PubMed  CAS  Google Scholar 

  56. Baysal, B. E., Willett-Brozick, J. E., Taschner, P. E., Dauwerse, J. G., Devilee, P., & Devlin, B. (2001). A high-resolution integrated map spanning the SDHD gene at 11q23: A 1.1-Mb BAC contig, a partial transcript map and 15 new repeat polymorphisms in a tumour-suppressor region. European Journal of Human Genetics, 9(2), 121–129.

    Article  PubMed  CAS  Google Scholar 

  57. Camonis, J. H., & White, M. A. (2005). Ral GTPases: corrupting the exocyst in cancer cells. Trends in Cell Biology, 15(6), 327–332.

    Article  PubMed  CAS  Google Scholar 

  58. Tamaki, M., Goi, T., Hirono, Y., Katayama, K., & Yamaguchi, A. (2004). PPP2R1B gene alterations inhibit interaction of PP2A-Abeta and PP2A-C proteins in colorectal cancers. Oncology Reports, 11(3), 655–659.

    PubMed  CAS  Google Scholar 

  59. Chen, W., Arroyo, J. D., Timmons, J. C., Possemato, R., & Hahn, W. C. (2005). Cancer-associated PP2A Aalpha subunits induce functional haploinsufficiency and tumorigenicity. Cancer Research, 65(18), 8183–8192.

    Article  PubMed  CAS  Google Scholar 

  60. Trotman, L. C., Alimonti, A., Scaglioni, P. P., Koutcher, J. A., Cordon-Cardo, C., & Pandolfi, P. P. (2006). Identification of a tumour suppressor network opposing nuclear Akt function. Nature, 441(7092), 523–527.

    Article  PubMed  CAS  Google Scholar 

  61. Soo Hoo, L., Zhang, J. Y., & Chan, E. K. (2002). Cloning and characterization of a novel 90 kDa ‘companion’ auto-antigen of p62 overexpressed in cancer. Oncogene, 21(32), 5006–5015.

    Article  PubMed  CAS  Google Scholar 

  62. Arnold, H. K., & Sears, R. C. (2006). Protein phosphatase 2A regulatory subunit B56alpha associates with c-myc and negatively regulates c-myc accumulation. Molecular and Cellular Biology, 26(7), 2832–2844.

    Article  PubMed  CAS  Google Scholar 

  63. Sears, R. C. (2004). The life cycle of C-myc: from synthesis to degradation. Cell Cycle, 3(9), 1133–1137.

    PubMed  CAS  Google Scholar 

  64. Yeh, E., Cunningham, M., Arnold, H., Chasse, D., Monteith, T., Ivaldi, G., et al. (2004). A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nature Cell Biology, 6(4), 308–318.

    Article  PubMed  CAS  Google Scholar 

  65. Escamilla-Powers, J. R., & Sears, R. C. (2007). A conserved pathway that controls c-Myc protein stability through opposing phosphorylation events occurs in yeast. Journal of Biological Chemistry, 282(8), 5432–5442.

    Article  PubMed  CAS  Google Scholar 

  66. Kalla, C., Scheuermann, M. O., Kube, I., Schlotter, M., Mertens, D., Dohner, H., et al. (2007). Analysis of 11q22-q23 deletion target genes in B-cell chronic lymphocytic leukaemia: evidence for a pathogenic role of NPAT, CUL5, and PPP2R1B. European Journal of Cancer, 43(8), 1328–1335.

    Article  PubMed  CAS  Google Scholar 

  67. Dohner, H., Stilgenbauer, S., James, M. R., Benner, A., Weilguni, T., Bentz, M., et al. (1997). 11q deletions identify a new subset of B-cell chronic lymphocytic leukemia characterized by extensive nodal involvement and inferior prognosis. Blood, 89(7), 2516–2522.

    PubMed  CAS  Google Scholar 

  68. Zhu, Y., Loukola, A., Monni, O., Kuokkanen, K., Franssila, K., Elonen, E., et al. (2001). PPP2R1B gene in chronic lymphocytic leukemias and mantle cell lymphomas. Leukaemia and Lymphoma, 41(1–2), 177–183.

    Article  CAS  Google Scholar 

  69. Liu, Q., Zhao, X., Frissora, F., Ma, Y., Santhanam, R., Jarjoura, D., et al. (2008). FTY720 demonstrates promising pre-clinical activity for chronic lymphocytic leukemia and lymphoblastic leukemia/lymphoma. Blood, 111, 275–284.

    Article  PubMed  CAS  Google Scholar 

  70. Dumont, F. J. (2005). Fingolimod. Mitsubishi Pharma/Novartis. IDrugs, 8(3), 236–253.

    PubMed  CAS  Google Scholar 

  71. Virley, D. J. (2005). Developing therapeutics for the treatment of multiple sclerosis. NeuroRx, 2(4), 638–649.

    Article  PubMed  Google Scholar 

  72. Budde, K., Schmouder, R. L., Brunkhorst, R., Nashan, B., Lucker, P. W., Mayer, T., et al. (2002). First human trial of FTY720, a novel immunomodulator, in stable renal transplant patients. Journal of the American Society of Nephrology, 13(4), 1073–1083.

    PubMed  CAS  Google Scholar 

  73. Skerjanec, A., Tedesco, H., Neumayer, H. H., Cole, E., Budde, K., Hsu, C. H., et al. (2005). FTY720, a novel immunomodulator in de novo kidney transplant patients: Pharmacokinetics and exposure–response relationship. Journal of Clinical Pharmacology, 45(11), 1268–1278.

    Article  PubMed  CAS  Google Scholar 

  74. Brinkmann, V. (2004). FTY720: mechanism of action and potential benefit in organ transplantation. Yonsei Medical Journal, 45(6), 991–997.

    PubMed  CAS  Google Scholar 

  75. Kovarik, J. M., Schmouder, R., Barilla, D., Riviere, G. J., Wang, Y., & Hunt, T. (2004). Multiple-dose FTY720: Tolerability, pharmacokinetics, and lymphocyte responses in healthy subjects. Journal of Clinical Pharmacology, 44(5), 532–537.

    Article  PubMed  CAS  Google Scholar 

  76. Iervolino, A., Santilli, G., Trotta, R., Guerzoni, C., Cesi, V., Bergamaschi, A., et al. (2002). hnRNP A1 nucleocytoplasmic shuttling activity is required for normal myelopoiesis and BCR/ABL leukemogenesis. Molecular and Cellular Biology, 22(7), 2255–2266.

    Article  PubMed  CAS  Google Scholar 

  77. Perrotti, D., & Neviani, P. (2007). From mRNA metabolism to cancer therapy: Chronic myelogenous leukemia shows the way. Clinical Cancer Research, 13(6), 1638–1642.

    Article  PubMed  CAS  Google Scholar 

  78. Sato, S., Fujita, N., & Tsuruo, T. (2000). Modulation of Akt kinase activity by binding to Hsp90. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 10832–10837.

    Article  PubMed  CAS  Google Scholar 

  79. Yokoyama, N., Reich, N. C., & Miller, W. T. (2001). Involvement of protein phosphatase 2A in the interleukin-3-stimulated Jak2-Stat5 signaling pathway. Journal of Interferon and Cytokine Research, 21(6), 369–378.

    Article  PubMed  CAS  Google Scholar 

  80. Chiang, C. W., Kanies, C., Kim, K. W., Fang, W. B., Parkhurst, C., Xie, M., et al. (2003). Protein phosphatase 2A dephosphorylation of phosphoserine 112 plays the gatekeeper role for BAD-mediated apoptosis. Molecular and Cellular Biology, 23(18), 6350–6362.

    Article  PubMed  CAS  Google Scholar 

  81. Gomez, N., & Cohen, P. (1991). Dissection of the protein kinase cascade by which nerve growth factor activates MAP kinases. Nature, 353(6340), 170–173.

    Article  PubMed  CAS  Google Scholar 

  82. Avni, D., Yang, H., Martelli, F., Hofmann, F., ElShamy, W. M., Ganesan, S., et al. (2003). Active localization of the retinoblastoma protein in chromatin and its response to S phase DNA damage. Molecular Cell, 12(3), 735–746.

    Article  PubMed  CAS  Google Scholar 

  83. Cortez, D., Reuther, G., & Pendergast, A. M. (1997). The Bcr-Abl tyrosine kinase activates mitogenic signaling pathways and stimulates G1-to-S phase transition in hematopoietic cells. Oncogene, 15(19), 2333–2342.

    Article  PubMed  CAS  Google Scholar 

  84. Feschenko, M. S., Stevenson, E., Nairn, A. C., & Sweadner, K. J. (2002). A novel cAMP-stimulated pathway in protein phosphatase 2A activation. Journal of Pharmacology and Experimental Therapeutics, 302(1), 111–118.

    Article  PubMed  CAS  Google Scholar 

  85. Matsuoka, Y., Nagahara, Y., Ikekita, M., & Shinomiya, T. (2003). A novel immunosuppressive agent FTY720 induced Akt dephosphorylation in leukemia cells. British Journal of Pharmacology, 138(7), 1303–1312.

    Article  PubMed  CAS  Google Scholar 

  86. Liedtke, M., Pandey, P., Kumar, S., Kharbanda, S., & Kufe, D. (1998). Regulation of Bcr-Abl-induced SAP kinase activity and transformation by the SHPTP1 protein tyrosine phosphatase. Oncogene, 17(15), 1889–1892.

    Article  PubMed  CAS  Google Scholar 

  87. Lim, Y. M., Wong, S., Lau, G., Witte, O. N., & Colicelli, J. (2000). BCR/ABL inhibition by an escort/phosphatase fusion protein. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 12233–12238.

    Article  PubMed  CAS  Google Scholar 

  88. Chen, P., Levis, M., Brown, P., Kim, K. T., Allebach, J., & Small, D. (2005). FLT3/ITD mutation signaling includes suppression of SHP-1. Journal of Biological Chemistry, 280(7), 5361–5369.

    Article  PubMed  CAS  Google Scholar 

  89. Wu, C., Guan, Q., Wang, Y., Zhao, Z. J., & Zhou, G. W. (2003). SHP-1 suppresses cancer cell growth by promoting degradation of JAK kinases. Journal of Cellular Biochemistry, 90(5), 1026–1037.

    Article  PubMed  CAS  Google Scholar 

  90. Wu, C., Sun, M., Liu, L., & Zhou, G. W. (2003). The function of the protein tyrosine phosphatase SHP-1 in cancer. Gene, 306, 1–12.

    Article  PubMed  CAS  Google Scholar 

  91. Ding, X., & Staudinger, J. L. (2005). Induction of drug metabolism by forskolin: the role of the pregnane X receptor and the protein kinase a signal transduction pathway. Journal of Pharmacology and Experimental Therapeutics, 312(2), 849–856.

    Article  PubMed  CAS  Google Scholar 

  92. Seamon, K., & Daly, J. W. (1981). Activation of adenylate cyclase by the diterpene forskolin does not require the guanine nucleotide regulatory protein. Journal of Biological Chemistry, 256(19), 9799–9801.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Cancer Institute CA095512 (D.P.), NIH, Bethesda, MD; the US Army, Chronic Myelogenous Leukemia Research Program, DAMD17-03-1-0184 and W81XWH-07-1-0270 (D.P) and by the American-Italian Cancer Foundation (P.N). D.P. is a Scholar of the Leukemia and Lymphoma Society. The use of PP2A activating drugs for the treatment of Ph1 leukemias is currently patent pending: Perrotti D et al. (PCT/US2006/10882) “Activation of PP2A in the Treatment of Ph1 Leukemias” Application Serial Number: 60/665,091 final application pending.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Perrotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perrotti, D., Neviani, P. Protein phosphatase 2A (PP2A), a drugable tumor suppressor in Ph1(+) leukemias. Cancer Metastasis Rev 27, 159–168 (2008). https://doi.org/10.1007/s10555-008-9119-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-008-9119-x

Keywords

Navigation