Skip to main content

Advertisement

Log in

The tyrosine phosphatase Shp2 (PTPN11) in cancer

Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Diverse cellular processes are regulated by tyrosyl phosphorylation, which is controlled by protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPs). De-regulated tyrosyl phosphorylation, evoked by gain-of-function mutations and/or over-expression of PTKs, contributes to the pathogenesis of many cancers and other human diseases. PTPs, because they oppose the action of PTKs, had been considered to be prime suspects for potential tumor suppressor genes. Surprisingly, few, if any, tumor suppressor PTPs have been identified. However, the Src homology-2 domain-containing phosphatase Shp2 (encoded by PTPN11) is a bona fide proto-oncogene. Germline mutations in PTPN11 cause Noonan and LEOPARD syndromes, whereas somatic PTPN11 mutations occur in several types of hematologic malignancies, most notably juvenile myelomonocytic leukemia and, more rarely, in solid tumors. Shp2 also is an essential component in several other oncogene signaling pathways. Elucidation of the events underlying Shp2-evoked transformation may provide new insights into oncogenic mechanisms and novel targets for anti-cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Abbreviations

AGM:

aorta-gonad-mesonephros

ALCL:

anaplastic large cell lymphoma

AML:

acute myelogenous leukemia

B-ALL:

B-acute lymphoblastic leukemia

BM:

bone marrow

BMMs:

bone marrow macrophages

CagA:

cytoxin-associated antigen A

CFU:

colony forming unit

CML:

chronic myelogenous leukemia

CMML:

chronic myelomonocytic leukemia

FL:

fetal liver

FRS:

fibroblast growth factor receptor substrate

GAB:

GRB2-associated binders

ICSBP:

interferon consensus sequence binding protein

IRF8:

interferon response factor 8

IRS:

insulin receptor substrate

JMML:

juvenile myelomonocytic leukemia

LS:

LEOPARD syndrome

MDS:

myelodysplastic syndrome

MM:

multiple myeloma

MPD:

myeloproliferative disease

NS:

Noonan syndrome

NRPTPs:

non-receptor PTPs

PTKs:

protein-tyrosine kinases

PTPs:

protein-tyrosine phosphatases

pY:

Phosphotyrosyl

RTKs:

receptor tyrosine kinases

SFK:

Src family kinase

SH2:

Src homology-2

WT:

wild type

YS:

yolk sac

References

  1. Mohi, M. G., & Neel, B. G. (2007). The role of Shp2 (PTPN11) in cancer. Current Opinion in Genetics & Development, 17(1), 23–30.

    Article  CAS  Google Scholar 

  2. Neel, B. G., Gu, H., & Pao, L. (2003). The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends in Biochemical Sciences, 28(6), 284–293.

    Article  PubMed  CAS  Google Scholar 

  3. Pao, L. I., Badour, K., Siminovitch, K. A., & Neel, B. G. (2007). Nonreceptor protein-tyrosine phosphatases in immune cell signaling. Annual Review of Immunology, 25, 473–523.

    Article  PubMed  CAS  Google Scholar 

  4. Feng, G. S. (1999). Shp-2 tyrosine phosphatase: signaling one cell or many. Experimental Cell Research, 253(1), 47–54.

    Article  PubMed  CAS  Google Scholar 

  5. Chan, R. J., & Feng, G. S. (2007). PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase. Blood, 109(3), 862–867.

    Article  PubMed  CAS  Google Scholar 

  6. Tartaglia, M., Mehler, E. L., Goldberg, R., Zampino, G., Brunner, H. G., Kremer, H., et al. (2001). Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nature Genetics, 29(4), 465–468.

    Article  PubMed  CAS  Google Scholar 

  7. Tartaglia, M., & Gelb, B. D. (2005). Noonan syndrome and related disorders: Genetics and pathogenesis. Annual Review of Genomics and Human Genetics, 6, 45–68.

    Article  PubMed  CAS  Google Scholar 

  8. Tartaglia, M., Niemeyer, C. M., Shannon, K. M., & Loh, M. L. (2004). SHP-2 and myeloid malignancies. Current Opinion in Hematology, 11(1), 44–50.

    Article  PubMed  CAS  Google Scholar 

  9. Tartaglia, M., Niemeyer, C. M., Fragale, A., Song, X., Buechner, J., Jung, A., et al. (2003). Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nature Genetics, 34(2), 148–150.

    Article  PubMed  CAS  Google Scholar 

  10. Loh, M. L., Vattikuti, S., Schubbert, S., Reynolds, M. G., Carlson, E., Lieuw, K. H., et al. (2004). Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood, 103(6), 2325–2331.

    Article  PubMed  CAS  Google Scholar 

  11. Neel, B., Gu, H., & Pao, L. (2003). SH2 domain-containing protein tyrosine phosphatases. In R. A. Bradshaw, & E. A. Dennis (Eds.) Handbook cell signaling pp. 707–730. Amsterdam: Elsevier.

    Chapter  Google Scholar 

  12. Gelb, B. D., & Tartaglia, M. (2006). Noonan syndrome and related disorders: dysregulated RAS-mitogen activated protein kinase signal transduction. Human Molecular Genetics, 15(Spec No 2), R220–226.

    Article  PubMed  CAS  Google Scholar 

  13. Tonks, N. K., & Neel, B. G. (2001). Combinatorial control of the specificity of protein tyrosine phosphatases. Current Opinion in Cell Biology, 13(2), 182–195.

    Article  PubMed  CAS  Google Scholar 

  14. Van Vactor, D., O’Reilly, A. M., & Neel, B. G. (1998). Genetic analysis of protein tyrosine phosphatases. Current Opinion in Genetics & Development, 8(1), 112–126.

    Article  Google Scholar 

  15. Araki, T., Nawa, H., & Neel, B. G. (2003). Tyrosyl phosphorylation of Shp2 is required for normal ERK activation in response to some, but not all, growth factors. Journal of Biological Chemistry, 278(43), 41677–41684.

    Article  PubMed  CAS  Google Scholar 

  16. Hof, P., Pluskey, S., Dhe-Paganon, S., Eck, M. J., & Shoelson, S. E. (1998). Crystal structure of the tyrosine phosphatase SHP-2. Cell, 92(4), 441–450.

    Article  PubMed  CAS  Google Scholar 

  17. Barford, D., & Neel, B. G. (1998). Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2. Structure, 6(3), 249–254.

    Article  PubMed  CAS  Google Scholar 

  18. O’Reilly, A. M., Pluskey, S., Shoelson, S. E., & Neel, B. G. (2000). Activated mutants of SHP-2 preferentially induce elongation of Xenopus animal caps. Molecular and Cellular Biology, 20(1), 299–311.

    PubMed  CAS  Google Scholar 

  19. Zhang, S. Q., Yang, W., Kontaridis, M. I., Bivona, T. G., Wen, G., Araki, T., et al. (2004). Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Molecular Cell, 13(3), 341–355.

    Article  PubMed  Google Scholar 

  20. Ren, Y., Meng, S., Mei, L., Zhao, Z. J., Jove, R., & Wu, J. (2004). Roles of Gab1 and SHP2 in paxillin tyrosine dephosphorylation and Src activation in response to epidermal growth factor. Journal of Biological Chemistry, 279(9), 8497–8505.

    Article  PubMed  CAS  Google Scholar 

  21. Bertotti, A., Comoglio, P. M., & Trusolino, L. (2006). Beta4 integrin activates a Shp2-Src signaling pathway that sustains HGF-induced anchorage-independent growth. Journal of Cell Biology, 175(6), 993–1003.

    Article  PubMed  CAS  Google Scholar 

  22. Klinghoffer, R. A., & Kazlauskas, A. (1995). Identification of a putative Syp substrate, the PDGF beta receptor. Journal of Biological Chemistry, 270(38), 22208–22217.

    Article  PubMed  CAS  Google Scholar 

  23. Agazie, Y. M., & Hayman, M. J. (2003). Molecular mechanism for a role of SHP2 in epidermal growth factor receptor signaling. Molecular and Cellular Biology, 23(21), 7875–7886.

    Article  PubMed  CAS  Google Scholar 

  24. Cleghon, V., Feldmann, P., Ghiglione, C., Copeland, T. D., Perrimon, N., Hughes, D. A., et al. (1998). Opposing actions of CSW and RasGAP modulate the strength of Torso RTK signaling in the Drosophila terminal pathway. Molecular Cell, 2(6), 719–727.

    Article  PubMed  CAS  Google Scholar 

  25. Hanafusa, H., Torii, S., Yasunaga, T., Matsumoto, K., & Nishida, E. (2004). Shp2, an SH2-containing protein-tyrosine phosphatase, positively regulates receptor tyrosine kinase signaling by dephosphorylating and inactivating the inhibitor Sprouty. Journal of Biological Chemistry, 279(22), 22992–22995.

    Article  PubMed  CAS  Google Scholar 

  26. Jarvis, L. A., Toering, S. J., Simon, M. A., Krasnow, M. A., & Smith-Bolton, R. K. (2006). Sprouty proteins are in vivo targets of Corkscrew/SHP-2 tyrosine phosphatases. Development, 133(6), 1133–1142.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang, S. Q., Tsiaras, W. G., Araki, T., Wen, G., Minichiello, L., Klein, R., et al. (2002). Receptor-specific regulation of phosphatidylinositol 3’′-kinase activation by the protein tyrosine phosphatase Shp2. Molecular and Cellular Biology, 22(12), 4062–4072.

    Article  PubMed  CAS  Google Scholar 

  28. Mattoon, D. R., Lamothe, B., Lax, I., & Schlessinger, J. (2004). The docking protein Gab1 is the primary mediator of EGF-stimulated activation of the PI-3K/Akt cell survival pathway. BMC Biol, 2, 24.

    Article  PubMed  CAS  Google Scholar 

  29. Shi, Z. Q., Lu, W., & Feng, G. S. (1998). The Shp-2 tyrosine phosphatase has opposite effects in mediating the activation of extracellular signal-regulated and c-Jun NH2-terminal mitogen-activated protein kinases. Journal of Biological Chemistry, 273(9), 4904–4908.

    Article  PubMed  CAS  Google Scholar 

  30. You, M., Flick, L. M., Yu, D., & Feng, G. S. (2001). Modulation of the nuclear factor kappa B pathway by Shp-2 tyrosine phosphatase in mediating the induction of interleukin (IL)-6 by IL-1 or tumor necrosis factor. Journal of Experimental Medicine, 193(1), 101–110.

    Article  PubMed  CAS  Google Scholar 

  31. Schoenwaelder, S. M., Petch, L. A., Williamson, D., Shen, R., Feng, G. S., & Burridge, K. (2000). The protein tyrosine phosphatase Shp-2 regulates RhoA activity. Current Biology, 10(23), 1523–1526.

    Article  PubMed  CAS  Google Scholar 

  32. Kontaridis, M. I., Eminaga, S., Fornaro, M., Zito, C. I., Sordella, R., Settleman, J., et al. (2004). SHP-2 positively regulates myogenesis by coupling to the Rho GTPase signaling pathway. Molecular and Cellular Biology, 24(12), 5340–5352.

    Article  PubMed  CAS  Google Scholar 

  33. Uhlen, P., Burch, P. M., Zito, C. I., Estrada, M., Ehrlich, B. E., & Bennett, A. M. (2006). Gain-of-function/Noonan syndrome SHP-2/Ptpn11 mutants enhance calcium oscillations and impair NFAT signaling. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2160–2165.

    Article  PubMed  CAS  Google Scholar 

  34. Walter, A. O., Peng, Z. Y., & Cartwright, C. A. (1999). The Shp-2 tyrosine phosphatase activates the Src tyrosine kinase by a non-enzymatic mechanism. Oncogene, 18(11), 1911–1920.

    Article  PubMed  CAS  Google Scholar 

  35. Yu, W. M., Hawley, T. S., Hawley, R. G., & Qu, C. K. (2003). Catalytic-dependent and -independent roles of SHP-2 tyrosine phosphatase in interleukin-3 signaling. Oncogene, 22(38), 5995–6004.

    Article  PubMed  CAS  Google Scholar 

  36. Schubbert, S., Zenker, M., Rowe, S. L., Boll, S., Klein, C., Bollag, G., et al. (2006). Germline KRAS mutations cause Noonan syndrome. Nature Genetics, 38(3), 331–336.

    Article  PubMed  CAS  Google Scholar 

  37. Carta, C., Pantaleoni, F., Bocchinfuso, G., Stella, L., Vasta, I., Sarkozy, A., et al. (2006). Germline missense mutations affecting KRAS Isoform B are associated with a severe Noonan syndrome phenotype. American Journal of Human Genetics, 79(1), 129–135.

    Article  PubMed  CAS  Google Scholar 

  38. Roberts, A. E., Araki, T., Swanson, K. D., Montgomery, K. T., Schiripo, T. A., Joshi, V. A., et al. (2007). Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nature Genetics, 39(1), 70–74.

    Article  PubMed  CAS  Google Scholar 

  39. Tartaglia, M., Pennacchio, L. A., Zhao, C., Yadav, K. K., Fodale, V., Sarkozy, A., et al. (2007). Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nature Genetics, 39(1), 75–79.

    Article  PubMed  CAS  Google Scholar 

  40. Razzaque, M. A., Nishizawa, T., Komoike, Y., Yagi, H., Furutani, M., Amo, R., et al. (2007). Germline gain-of-function mutations in RAF1 cause Noonan syndrome. Nature Genetics, 39, 1013–1017.

    Article  PubMed  CAS  Google Scholar 

  41. Pandit, B., Sarkozy, A., Pennacchio, L. A., Carta, C., Oishi, K., Martinelli, S., et al. (2007). Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nature Genetics, 39, 1007–1012.

    Article  PubMed  CAS  Google Scholar 

  42. Tartaglia, M., Martinelli, S., Iavarone, I., Cazzaniga, G., Spinelli, M., Giarin, E., et al. (2005). Somatic PTPN11 mutations in childhood acute myeloid leukaemia. British Journal of Haematology, 129(3), 333–339.

    Article  PubMed  CAS  Google Scholar 

  43. Bentires-Alj, M., Paez, J. G., David, F. S., Keilhack, H., Halmos, B., Naoki, K., et al. (2004). Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Research, 64(24), 8816–8820.

    Article  PubMed  CAS  Google Scholar 

  44. Loh, M. L., Reynolds, M. G., Vattikuti, S., Gerbing, R. B., Alonzo, T. A., Carlson, E., et al. (2004). PTPN11 mutations in pediatric patients with acute myeloid leukemia: results from the Children’s Cancer Group. Leukemia, 18(11), 1831–1834.

    Article  PubMed  CAS  Google Scholar 

  45. Tartaglia, M., Martinelli, S., Cazzaniga, G., Cordeddu, V., Iavarone, I., Spinelli, M., et al. (2004). Genetic evidence for lineage-related and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia. Blood, 104(2), 307–313.

    Article  PubMed  CAS  Google Scholar 

  46. Yamamoto, T., Isomura, M., Xu, Y., Liang, J., Yagasaki, H., Kamachi, Y., et al. (2006). PTPN11, RAS and FLT3 mutations in childhood acute lymphoblastic leukemia. Leukemia Research, 30(9), 1085–1089.

    Article  PubMed  CAS  Google Scholar 

  47. Martinelli, S., Carta, C., Flex, E., Binni, F., Cordisco, E. L., Moretti, S., et al. (2006). Activating PTPN11 mutations play a minor role in pediatric and adult solid tumors. Cancer Genetics and Cytogenetics, 166(2), 124–129.

    Article  PubMed  CAS  Google Scholar 

  48. Sjoblom, T., Jones, S., Wood, L. D., Parsons, D. W., Lin, J., Barber, T. D., et al. (2006). The consensus coding sequences of human breast and colorectal cancers. Science, 314(5797), 268–274.

    Article  PubMed  CAS  Google Scholar 

  49. Tartaglia, M., Kalidas, K., Shaw, A., Song, X., Musat, D. L., van der Burgt, I., et al. (2002). PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype–phenotype correlation, and phenotypic heterogeneity. American Journal of Human Genetics, 70(6), 1555–1563.

    Article  PubMed  CAS  Google Scholar 

  50. Kosaki, K., Suzuki, T., Muroya, K., Hasegawa, T., Sato, S., Matsuo, N., et al. (2002). PTPN11 (protein-tyrosine phosphatase, nonreceptor-type 11) mutations in seven Japanese patients with Noonan syndrome. Journal of Clinical Endocrinology and Metabolism, 87(8), 3529–3533.

    Article  PubMed  CAS  Google Scholar 

  51. Keilhack, H., David, F. S., McGregor, M., Cantley, L. C., & Neel, B. G. (2005). Diverse biochemical properties of Shp2 mutants. Implications for disease phenotypes. Journal of Biological Chemistry, 280(35), 30984–30993.

    Article  PubMed  CAS  Google Scholar 

  52. Niihori, T., Aoki, Y., Ohashi, H., Kurosawa, K., Kondoh, T., Ishikiriyama, S., et al. (2005). Functional analysis of PTPN11/SHP-2 mutants identified in Noonan syndrome and childhood leukemia. Journal of Human Genetics, 50(4), 192–202.

    Article  PubMed  CAS  Google Scholar 

  53. Tartaglia, M., Martinelli, S., Stella, L., Bocchinfuso, G., Flex, E., Cordeddu, V., et al. (2006). Diversity and functional consequences of germline and somatic PTPN11 mutations in human disease. American Journal of Human Genetics, 78(2), 279–290.

    Article  PubMed  CAS  Google Scholar 

  54. Araki, T., Mohi, M. G., Ismat, F. A., Bronson, R. T., Williams, I. R., Kutok, J. L., et al. (2004). Mouse model of Noonan syndrome reveals cell type- and gene dosage-dependent effects of Ptpn11 mutation. Nature Medicine, 10(8), 849–857.

    Article  PubMed  CAS  Google Scholar 

  55. Kontaridis, M. I., Swanson, K. D., David, F. S., Barford, D., & Neel, B. G. (2006). PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects. Journal of Biological Chemistry, 281(10), 6785–6792.

    Article  PubMed  CAS  Google Scholar 

  56. Hanna, N., Montagner, A., Lee, W. H., Miteva, M., Vidal, M., Vidaud, M., et al. (2006). Reduced phosphatase activity of SHP-2 in LEOPARD syndrome: consequences for PI3K binding on Gab1. FEBS Letters, 580(10), 2477–2482.

    Article  PubMed  CAS  Google Scholar 

  57. Conti, E., Dottorini, T., Sarkozy, A., Tiller, G. E., Esposito, G., Pizzuti, A., et al. (2003). A novel PTPN11 mutation in LEOPARD syndrome. Human Mutation, 21(6), 654.

    Article  PubMed  CAS  Google Scholar 

  58. Brems, H., Chmara, M., Sahbatou, M., Denayer, E., Taniguchi, K., Kato, R., et al. (2007). Germline loss-of-function mutations in SPRED1 cause a neurofibromatosis 1-like phenotype. Nature Genetics, 39(9), 1120–1126.

    Article  PubMed  CAS  Google Scholar 

  59. Sarkozy, A., Conti, E., Digilio, M. C., Marino, B., Morini, E., Pacileo, G., et al. (2004). Clinical and molecular analysis of 30 patients with multiple lentigines LEOPARD syndrome. Journal of Medical Genetics, 41(5), e68.

    Article  PubMed  CAS  Google Scholar 

  60. Ucar, C., Calyskan, U., Martini, S., & Heinritz, W. (2006). Acute myelomonocytic leukemia in a boy with LEOPARD syndrome (PTPN11 gene mutation positive). Journal of Pediatric Hematology Oncology, 28(3), 123–125.

    Article  CAS  Google Scholar 

  61. Keren, B., Hadchouel, A., Saba, S., Sznajer, Y., Bonneau, D., Leheup, B., et al. (2004). PTPN11 mutations in patients with LEOPARD syndrome: a French multicentric experience. Journal of Medical Genetics, 41(11), e117.

    Article  PubMed  CAS  Google Scholar 

  62. Merks, J. H., Caron, H. N., & Hennekam, R. C. (2005). High incidence of malformation syndromes in a series of 1,073 children with cancer. American Journal of Medical Genetics, 134(2), 132–143.

    PubMed  Google Scholar 

  63. Xu, R., Yu, Y., Zheng, S., Zhao, X., Dong, Q., He, Z., et al. (2005). Overexpression of Shp2 tyrosine phosphatase is implicated in leukemogenesis in adult human leukemia. Blood, 106(9), 3142–3149.

    Article  PubMed  CAS  Google Scholar 

  64. Chan, R. J., Leedy, M. B., Munugalavadla, V., Voorhorst, C. S., Li, Y., Yu, M., et al. (2005). Human somatic PTPN11 mutations induce hematopoietic-cell hypersensitivity to granulocyte-macrophage colony-stimulating factor. Blood, 105(9), 3737–3742.

    Article  PubMed  CAS  Google Scholar 

  65. Mohi, M. G., Williams, I. R., Dearolf, C. R., Chan, G., Kutok, J. L., Cohen, S., et al. (2005). Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer Cell, 7(2), 179–191.

    Article  PubMed  CAS  Google Scholar 

  66. Yu, W. M., Daino, H., Chen, J., Bunting, K. D., & Qu, C. K. (2006). Effects of a leukemia-associated gain-of-function mutation of SHP-2 phosphatase on interleukin-3 signaling. Journal of Biological Chemistry, 281(9), 5426–5434.

    Article  PubMed  CAS  Google Scholar 

  67. Emanuel, P. D., Shannon, K. M., & Castleberry, R. P. (1996). Juvenile myelomonocytic leukemia: molecular understanding and prospects for therapy. Molecular Medicine Today, 2(11), 468–475.

    Article  PubMed  CAS  Google Scholar 

  68. Schubbert, S., Shannon, K., & Bollag, G. (2007). Hyperactive Ras in developmental disorders and cancer. Nature Reviews. Cancer, 7(4), 295–308.

    Article  PubMed  CAS  Google Scholar 

  69. Kratz, C. P., Niemeyer, C. M., Thomas, C., Bauhuber, S., Matejas, V., Bergstrasser, E., et al. (2007). Mutation analysis of Son of Sevenless in juvenile myelomonocytic leukemia. Leukemia, 21(5), 1108–1109.

    PubMed  CAS  Google Scholar 

  70. Schubbert, S., Lieuw, K., Rowe, S. L., Lee, C. M., Li, X., Loh, M. L., et al. (2005). Functional analysis of leukemia-associated PTPN11 mutations in primary hematopoietic cells. Blood, 106(1), 311–317.

    Article  PubMed  CAS  Google Scholar 

  71. Zhang, Y. Y., Vik, T. A., Ryder, J. W., Srour, E. F., Jacks, T., Shannon, K., et al. (1998). Nf1 regulates hematopoietic progenitor cell growth and ras signaling in response to multiple cytokines. Journal of Experimental Medicine, 187(11), 1893–1902.

    Article  PubMed  CAS  Google Scholar 

  72. Le, D. T., Kong, N., Zhu, Y., Lauchle, J. O., Aiyigari, A., Braun, B. S., et al. (2004). Somatic inactivation of Nf1 in hematopoietic cells results in a progressive myeloproliferative disorder. Blood, 103(11), 4243–4250.

    Article  PubMed  CAS  Google Scholar 

  73. Donovan, S., See, W., Bonifas, J., Stokoe, D., & Shannon, K. M. (2002). Hyperactivation of protein kinase B and ERK have discrete effects on survival, proliferation, and cytokine expression in Nf1-deficient myeloid cells. Cancer Cell, 2(6), 507–514.

    Article  PubMed  CAS  Google Scholar 

  74. Largaespada, D. A., Brannan, C. I., Jenkins, N. A., & Copeland, N. G. (1996). Nf1 deficiency causes Ras-mediated granulocyte/macrophage colony stimulating factor hypersensitivity and chronic myeloid leukaemia. Nature Genetics, 12(2), 137–143.

    Article  PubMed  CAS  Google Scholar 

  75. Bollag, G., Clapp, D. W., Shih, S., Adler, F., Zhang, Y. Y., Thompson, P., et al. (1996). Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nature Genetics, 12(2), 144–148.

    Article  PubMed  CAS  Google Scholar 

  76. Braun, B. S., Tuveson, D. A., Kong, N., Le, D. T., Kogan, S. C., Rozmus, J., et al. (2004). Somatic activation of oncogenic Kras in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proceedings of the National Academy of Sciences of the United States of America, 101(2), 597–602.

    Article  PubMed  CAS  Google Scholar 

  77. Chan, I. T., Kutok, J. L., Williams, I. R., Cohen, S., Kelly, L., Shigematsu, H., et al. (2004). Conditional expression of oncogenic K-ras from its endogenous promoter induces a myeloproliferative disease. Journal of Clinical Investigation, 113(4), 528–538.

    PubMed  CAS  Google Scholar 

  78. Li, S., Gillessen, S., Tomasson, M. H., Dranoff, G., Gilliland, D. G., & Van Etten, R. A. (2001). Interleukin 3 and granulocyte-macrophage colony-stimulating factor are not required for induction of chronic myeloid leukemia-like myeloproliferative disease in mice by BCR/ABL. Blood, 97(5), 1442–1450.

    Article  PubMed  CAS  Google Scholar 

  79. Zhang, Y., Taylor, B. R., Shannon, K., & Clapp, D. W. (2001). Quantitative effects of Nf1 inactivation on in vivo hematopoiesis. Journal of Clinical Investigation, 108(5), 709–715.

    PubMed  CAS  Google Scholar 

  80. Chen, Y., Wen, R., Yang, S., Schuman, J., Zhang, E. E., Yi, T., et al. (2003). Identification of Shp-2 as a Stat5A phosphatase. Journal of Biological Chemistry, 278(19), 16520–16527.

    Article  PubMed  CAS  Google Scholar 

  81. Huang, W., Saberwal, G., Horvath, E., Zhu, C., Lindsey, S., & Eklund, E. A. (2006). Leukemia-associated, constitutively active mutants of SHP2 protein tyrosine phosphatase inhibit NF1 transcriptional activation by the interferon consensus sequence binding protein. Molecular and Cellular Biology, 26(17), 6311–6332.

    Article  PubMed  CAS  Google Scholar 

  82. Holtschke, T., Lohler, J., Kanno, Y., Fehr, T., Giese, N., Rosenbauer, F., et al. (1996). Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell, 87(2), 307–317.

    Article  PubMed  CAS  Google Scholar 

  83. Kautz, B., Kakar, R., David, E., & Eklund, E. A. (2001). SHP1 protein-tyrosine phosphatase inhibits gp91PHOX and p67PHOX expression by inhibiting interaction of PU.1, IRF1, interferon consensus sequence-binding protein, and CREB-binding protein with homologous Cis elements in the CYBB and NCF2 genes. Journal of Biological Chemistry, 276(41), 37868–37878.

    PubMed  CAS  Google Scholar 

  84. Lindsey, S., Huang, W., Wang, H., Horvath, E., Zhu, C., & Eklund, E. A. (2007). Activation of SHP2 protein-tyrosine phosphatase increases HoxA10-induced repression of the genes encoding gp91(PHOX) and p67(PHOX). Journal of Biological Chemistry, 282(4), 2237–2249.

    Article  PubMed  CAS  Google Scholar 

  85. Mason, J. M., Morrison, D. J., Basson, M. A., & Licht, J. D. (2006). Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends in Cell Biology, 16(1), 45–54.

    Article  PubMed  CAS  Google Scholar 

  86. Basson, M. A., Akbulut, S., Watson-Johnson, J., Simon, R., Carroll, T. J., Shakya, R., et al. (2005). Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Developmental Cell, 8(2), 229–239.

    Article  PubMed  CAS  Google Scholar 

  87. Taketomi, T., Yoshiga, D., Taniguchi, K., Kobayashi, T., Nonami, A., Kato, R., et al. (2005). Loss of mammalian Sprouty2 leads to enteric neuronal hyperplasia and esophageal achalasia. Nature Neuroscience, 8(7), 855–857.

    PubMed  CAS  Google Scholar 

  88. Shim, K., Minowada, G., Coling, D. E., & Martin, G. R. (2005). Sprouty2, a mouse deafness gene, regulates cell fate decisions in the auditory sensory epithelium by antagonizing FGF signaling. Developmental Cell, 8(4), 553–564.

    Article  PubMed  CAS  Google Scholar 

  89. Klein, O. D., Minowada, G., Peterkova, R., Kangas, A., Yu, B. D., Lesot, H., et al. (2006). Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Developmental Cell, 11(2), 181–190.

    Article  PubMed  CAS  Google Scholar 

  90. Taniguchi, K., Ayada, T., Ichiyama, K., Kohno, R., Yonemitsu, Y., Minami, Y., et al. (2007). Sprouty2 and Sprouty4 are essential for embryonic morphogenesis and regulation of FGF signaling. Biochemical and Biophysical Research Communications, 352(4), 896–902.

    Article  PubMed  CAS  Google Scholar 

  91. Wakioka, T., Sasaki, A., Kato, R., Shouda, T., Matsumoto, A., Miyoshi, K., et al. (2001). Spred is a Sprouty-related suppressor of Ras signalling. Nature, 412(6847), 647–651.

    Article  PubMed  CAS  Google Scholar 

  92. Kato, R., Nonami, A., Taketomi, T., Wakioka, T., Kuroiwa, A., Matsuda, Y., et al. (2003). Molecular cloning of mammalian Spred-3 which suppresses tyrosine kinase-mediated Erk activation. Biochemical and Biophysical Research Communications, 302(4), 767–772.

    Article  PubMed  CAS  Google Scholar 

  93. Nonami, A., Kato, R., Taniguchi, K., Yoshiga, D., Taketomi, T., Fukuyama, S., et al. (2004). Spred-1 negatively regulates interleukin-3-mediated ERK/mitogen-activated protein (MAP) kinase activation in hematopoietic cells. Journal of Biological Chemistry, 279(50), 52543–52551.

    Article  PubMed  CAS  Google Scholar 

  94. Taniguchi, K., Kohno, R., Ayada, T., Kato, R., Ichiyama, K., Morisada, T., et al. (2007). Spreds are essential for embryonic lymphangiogenesis by regulating vascular endothelial growth factor receptor 3 signaling. Molecular and Cellular Biology, 27(12), 4541–4550.

    Article  PubMed  CAS  Google Scholar 

  95. Inoue, H., Kato, R., Fukuyama, S., Nonami, A., Taniguchi, K., Matsumoto, K., et al. (2005). Spred-1 negatively regulates allergen-induced airway eosinophilia and hyperresponsiveness. Journal of Experimental Medicine, 201(1), 73–82.

    Article  PubMed  CAS  Google Scholar 

  96. Bundschu, K., Knobeloch, K. P., Ullrich, M., Schinke, T., Amling, M., Engelhardt, C. M., et al. (2005). Gene disruption of Spred-2 causes dwarfism. Journal of Biological Chemistry, 280(31), 28572–28580.

    Article  PubMed  CAS  Google Scholar 

  97. Nobuhisa, I., Kato, R., Inoue, H., Takizawa, M., Okita, K., Yoshimura, A., et al. (2004). Spred-2 suppresses aorta-gonad-mesonephros hematopoiesis by inhibiting MAP kinase activation. Journal of Experimental Medicine, 199(5), 737–742.

    Article  PubMed  CAS  Google Scholar 

  98. Irish, J. M., Hovland, R., Krutzik, P. O., Perez, O. D., Bruserud, O., Gjertsen, B. T., et al. (2004). Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell, 118(2), 217–228.

    Article  PubMed  CAS  Google Scholar 

  99. Ornatsky, O., Baranov, V. I., Bandura, D. R., Tanner, S. D., & Dick, J. (2006). Multiple cellular antigen detection by ICP-MS. Journal of Immunological Methods, 308(1–2), 68–76.

    Article  PubMed  CAS  Google Scholar 

  100. Loh, M. L., Martinelli, S., Cordeddu, V., Reynolds, M. G., Vattikuti, S., Lee, C. M., et al. (2005). Acquired PTPN11 mutations occur rarely in adult patients with myelodysplastic syndromes and chronic myelomonocytic leukemia. Leukemia Research, 29(4), 459–462.

    Article  PubMed  CAS  Google Scholar 

  101. Ren, R. (2005). Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nature Reviews. Cancer, 5(3), 172–183.

    Article  PubMed  CAS  Google Scholar 

  102. O’Hare, T., Corbin, A. S., & Druker, B. J. (2006). Targeted CML therapy: controlling drug resistance, seeking cure. Current Opinion in Genetics & Development, 16(1), 92–99.

    Article  CAS  Google Scholar 

  103. Million, R. P., & Van Etten, R. A. (2000). The Grb2 binding site is required for the induction of chronic myeloid leukemia-like disease in mice by the Bcr/Abl tyrosine kinase. Blood, 96(2), 664–670.

    PubMed  CAS  Google Scholar 

  104. Zhang, X., Subrahmanyam, R., Wong, R., Gross, A. W., & Ren, R. (2001). The NH(2)-terminal coiled-coil domain and tyrosine 177 play important roles in induction of a myeloproliferative disease in mice by Bcr-Abl. Molecular and Cellular Biology, 21(3), 840–853.

    Article  PubMed  CAS  Google Scholar 

  105. He, Y., Wertheim, J. A., Xu, L., Miller, J. P., Karnell, F. G., Choi, J. K., et al. (2002). The coiled-coil domain and Tyr177 of bcr are required to induce a murine chronic myelogenous leukemia-like disease by bcr/abl. Blood, 99(8), 2957–2968.

    Article  PubMed  CAS  Google Scholar 

  106. Sattler, M., & Griffin, J. D. (2001). Mechanisms of transformation by the BCR/ABL oncogene. International Journal of Hematology, 73(3), 278–291.

    Article  PubMed  CAS  Google Scholar 

  107. Sattler, M., Mohi, M. G., Pride, Y. B., Quinnan, L. R., Malouf, N. A., Podar, K., et al. (2002). Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell, 1(5), 479–492.

    Article  PubMed  CAS  Google Scholar 

  108. Scherr, M., Chaturvedi, A., Battmer, K., Dallmann, I., Schultheis, B., Ganser, A., et al. (2006). Enhanced sensitivity to inhibition of SHP2, STAT5, and Gab2 expression in chronic myeloid leukemia (CML). Blood, 107(8), 3279–3287.

    Article  PubMed  CAS  Google Scholar 

  109. Chen, J., Yu, W. M., Daino, H., Broxmeyer, H. E., Druker, B. J., & Qu, C. K. (2007). SHP-2 phosphatase is required for hematopoietic cell transformation by Bcr-Abl. Blood, 109(2), 778–785.

    Article  PubMed  CAS  Google Scholar 

  110. Teal, H. E., Ni, S., Xu, J., Finkelstein, L. D., Cheng, A. M., Paulson, R. F., et al. (2006). GRB2-mediated recruitment of GAB2, but not GAB1, to SF-STK supports the expansion of Friend virus-infected erythroid progenitor cells. Oncogene, 25(17), 2433–2443.

    Article  PubMed  CAS  Google Scholar 

  111. Ischenko, I., Petrenko, O., Gu, H., & Hayman, M. J. (2003). Scaffolding protein Gab2 mediates fibroblast transformation by the SEA tyrosine kinase. Oncogene, 22(41), 6311–6318.

    Article  PubMed  CAS  Google Scholar 

  112. Niimi, H., Harada, H., Harada, Y., Ding, Y., Imagawa, J., Inaba, T., et al. (2006). Hyperactivation of the RAS signaling pathway in myelodysplastic syndrome with AML1/RUNX1 point mutations. Leukemia, 20(4), 635–644.

    Article  PubMed  CAS  Google Scholar 

  113. Hou, H. A., Chou, W. C., Lin, L. I., Chen, C. Y., Tang, J. L., Tseng, M. H., et al. (2007). Characterization of acute myeloid leukemia with PTPN11 mutation: the mutation is closely associated with NPM1 mutation but inversely related to FLT3/ITD. Leukemia, in press. Nov 1.

  114. Yamada, K., Nishida, K., Hibi, M., Hirano, T., & Matsuda, Y. (2001). Comparative FISH mapping of Gab1 and Gab2 genes in human, mouse and rat. Cytogenetics and Cell Genetics, 94(1–2), 39–42.

    PubMed  CAS  Google Scholar 

  115. Bekri, S., Adelaide, J., Merscher, S., Grosgeorge, J., Caroli-Bosc, F., Perucca-Lostanlen, D., et al. (1997). Detailed map of a region commonly amplified at 11q13–>q14 in human breast carcinoma. Cytogenetics and Cell Genetics, 79(1–2), 125–131.

    PubMed  CAS  Google Scholar 

  116. Ormandy, C. J., Musgrove, E. A., Hui, R., Daly, R. J., & Sutherland, R. L. (2003). Cyclin D1, EMS1 and 11q13 amplification in breast cancer. Breast Cancer Research and Treatment, 78(3), 323–335.

    Article  PubMed  CAS  Google Scholar 

  117. Brummer, T., Schramek, D., Hayes, V. M., Bennett, H. L., Caldon, C. E., Musgrove, E. A., et al. (2006). Increased proliferation and altered growth factor dependence of human mammary epithelial cells overexpressing the Gab2 docking protein. Journal of Biological Chemistry, 281(1), 626–637.

    Article  PubMed  CAS  Google Scholar 

  118. Bentires-Alj, M., Gil, S. G., Chan, R., Wang, Z. C., Wang, Y., Imanaka, N., et al. (2006). A role for the scaffolding adapter GAB2 in breast cancer. Nature Medicine, 12(1), 114–121.

    Article  PubMed  CAS  Google Scholar 

  119. Ke, Y., Wu, D., Princen, F., Nguyen, T., Pang, Y., Lesperance, J., et al. (2007). Role of Gab2 in mammary tumorigenesis and metastasis. Oncogene, 26(34), 4951–4960.

    Article  PubMed  CAS  Google Scholar 

  120. Hatakeyama, M. (2004). Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nature Reviews. Cancer, 4(9), 688–694.

    Article  PubMed  CAS  Google Scholar 

  121. Higashi, H., Tsutsumi, R., Muto, S., Sugiyama, T., Azuma, T., Asaka, M., et al. (2002). SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science, 295(5555), 683–686.

    Article  PubMed  CAS  Google Scholar 

  122. Tsutsumi, R., Higashi, H., Higuchi, M., Okada, M., & Hatakeyama, M. (2003). Attenuation of Helicobacter pylori CagA x SHP-2 signaling by interaction between CagA and C-terminal Src kinase. Journal of Biological Chemistry, 278(6), 3664–3670.

    Article  PubMed  CAS  Google Scholar 

  123. Higuchi, M., Tsutsumi, R., Higashi, H., & Hatakeyama, M. (2004). Conditional gene silencing utilizing the lac repressor reveals a role of SHP-2 in cagA-positive Helicobacter pylori pathogenicity. Cancer Science, 95(5), 442–447.

    Article  PubMed  CAS  Google Scholar 

  124. Tsutsumi, R., Takahashi, A., Azuma, T., Higashi, H., & Hatakeyama, M. (2006). Focal adhesion kinase is a substrate and downstream effector of SHP-2 complexed with Helicobacter pylori CagA. Molecular and Cellular Biology, 26(1), 261–276.

    Article  PubMed  CAS  Google Scholar 

  125. Manes, S., Mira, E., Gomez-Mouton, C., Zhao, Z. J., Lacalle, R. A., & Martinez, A. C. (1999). Concerted activity of tyrosine phosphatase SHP-2 and focal adhesion kinase in regulation of cell motility. Molecular and Cellular Biology, 19(4), 3125–3135.

    PubMed  CAS  Google Scholar 

  126. Vadlamudi, R. K., Adam, L., Nguyen, D., Santos, M., & Kumar, R. (2002). Differential regulation of components of the focal adhesion complex by heregulin: role of phosphatase SHP-2. Journal of Cellular Physiology, 190(2), 189–199.

    Article  PubMed  CAS  Google Scholar 

  127. Oh, E. S., Gu, H., Saxton, T. M., Timms, J. F., Hausdorff, S., Frevert, E. U., et al. (1999). Regulation of early events in integrin signaling by protein tyrosine phosphatase SHP-2. Molecular and Cellular Biology, 19(4), 3205–3215.

    PubMed  CAS  Google Scholar 

  128. Yu, D. H., Qu, C. K., Henegariu, O., Lu, X., & Feng, G. S. (1998). Protein-tyrosine phosphatase Shp-2 regulates cell spreading, migration, and focal adhesion. Journal of Biological Chemistry, 273(33), 21125–21131.

    Article  PubMed  CAS  Google Scholar 

  129. Higashi, H., Nakaya, A., Tsutsumi, R., Yokoyama, K., Fujii, Y., Ishikawa, S., et al. (2004). Helicobacter pylori CagA induces Ras-independent morphogenetic response through SHP-2 recruitment and activation. Journal of Biological Chemistry, 279(17), 17205–17216.

    Article  PubMed  CAS  Google Scholar 

  130. Saadat, I., Higashi, H., Obuse, C., Umeda, M., Murata-Kamiya, N., Saito, Y., et al. (2007). Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature, 447(7142), 330–333.

    Article  PubMed  CAS  Google Scholar 

  131. Raabe, T., Riesgo-Escovar, J., Liu, X., Bausenwein, B. S., Deak, P., Maroy, P., et al. (1996). DOS, a novel pleckstrin homology domain-containing protein required for signal transduction between sevenless and Ras1 in Drosophila. Cell, 85(6), 911–920.

    Article  PubMed  CAS  Google Scholar 

  132. Chauhan, D., Hideshima, T., Pandey, P., Treon, S., Teoh, G., Raje, N., et al. (1999). RAFTK/PYK2-dependent and -independent apoptosis in multiple myeloma cells. Oncogene, 18(48), 6733–6740.

    Article  PubMed  CAS  Google Scholar 

  133. Agazie, Y. M., Movilla, N., Ischenko, I., & Hayman, M. J. (2003). The phosphotyrosine phosphatase SHP2 is a critical mediator of transformation induced by the oncogenic fibroblast growth factor receptor 3. Oncogene, 22(44), 6909–6918.

    Article  PubMed  CAS  Google Scholar 

  134. Bergsagel, P. L., & Kuehl, W. M. (2005). Molecular pathogenesis and a consequent classification of multiple myeloma. Journal of Clinical Oncology, 23(26), 6333–6338.

    Article  PubMed  CAS  Google Scholar 

  135. Burks, J., & Agazie, Y. M. (2006). Modulation of alpha-catenin Tyr phosphorylation by SHP2 positively effects cell transformation induced by the constitutively active FGFR3. Oncogene, 25(54), 7166–7179.

    Article  PubMed  CAS  Google Scholar 

  136. Voena, C., Conte, C., Ambrogio, C., Boeri Erba, E., Boccalatte, F., Mohammed, S., et al. (2007). The tyrosine phosphatase Shp2 interacts with NPM-ALK and regulates anaplastic lymphoma cell growth and migration. Cancer Research, 67(9), 4278–4286.

    Article  PubMed  CAS  Google Scholar 

  137. Charest, A., Wilker, E. W., McLaughlin, M. E., Lane, K., Gowda, R., Coven, S., et al. (2006). ROS fusion tyrosine kinase activates a SH2 domain-containing phosphatase-2/phosphatidylinositol 3-kinase/mammalian target of rapamycin signaling axis to form glioblastoma in mice. Cancer Research, 66(15), 7473–7481.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, G., Kalaitzidis, D. & Neel, B.G. The tyrosine phosphatase Shp2 (PTPN11) in cancer. Cancer Metastasis Rev 27, 179–192 (2008). https://doi.org/10.1007/s10555-008-9126-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-008-9126-y

Keywords

Navigation