Skip to main content

Advertisement

Log in

Targeting the Ras–ERK pathway in pancreatic adenocarcinoma

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Pancreatic ductal adenocarcinoma (PAC) stands as the poorest prognostic tumor of the digestive tract with limited therapeutic options. PAC carcinogenesis is associated with the loss of function of tumor suppressor genes such as INK4A, TP53, BRCA2, and DPC4, and only a few activated oncogenes among which K-RAS mutations are the most prevalent. The K-RAS mutation occurs early in PAC carcinogenesis, driving downstream activation of MEK and ERK1/2 which promote survival, invasion, and migration of cancer cells. In PAC models, inhibition of members of the Ras–ERK pathway blocks cellular proliferation and metastasis development. As oncogenic Ras does not appear to be a suitable drug target, inhibitors targeting downstream kinases including Raf and MEK have been developed and are currently under evaluation in clinical trials. In this review, we describe the role of the Ras–ERK pathway in pancreatic carcinogenesis and as a new therapeutic target for the treatment of PAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jemal, A., Siegel, R., Xu, J., & Ward, E. (2010). Cancer statistics, 2010. CA: A Cancer Journal for Clinicians, 60(5), 277–300. doi:10.3322/caac.20073.

    Article  Google Scholar 

  2. Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., & Parkin, D. M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International Journal of Cancer. doi:10.1002/ijc.25516.

  3. Hidalgo, M. (2010). Pancreatic cancer. The New England Journal of Medicine, 362(17), 1605–1617. doi:10.1056/NEJMra0901557.

    Article  PubMed  CAS  Google Scholar 

  4. Vincent, A., Herman, J., Schulick, R., Hruban, R. H., & Goggins, M. (2011). Pancreatic cancer. Lancet, 378(9791), 607–620. doi:10.1016/S0140-6736(10)62307-0.

    Article  PubMed  Google Scholar 

  5. Burris, H. A., 3rd, Moore, M. J., Andersen, J., Green, M. R., Rothenberg, M. L., Modiano, M. R., et al. (1997). Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. Journal of Clinical Oncology, 15(6), 2403–2413.

    PubMed  CAS  Google Scholar 

  6. Moore, M. J., Goldstein, D., Hamm, J., Figer, A., Hecht, J. R., Gallinger, S., et al. (2007). Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. Journal of Clinical Oncology, 25(15), 1960–1966. doi:10.1200/JCO.2006.07.9525.

    Article  PubMed  CAS  Google Scholar 

  7. Conroy, T., Desseigne, F., Ychou, M., Bouche, O., Guimbaud, R., Becouarn, Y., et al. (2011). FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. The New England Journal of Medicine, 364(19), 1817–1825. doi:10.1056/NEJMoa1011923.

    Article  PubMed  CAS  Google Scholar 

  8. McCubrey, J. A., Steelman, L. S., Chappell, W. H., Abrams, S. L., Wong, E. W., Chang, F., et al. (2007). Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica et Biophysica Acta, 1773(8), 1263–1284. doi:10.1016/j.bbamcr.2006.10.001.

    Article  PubMed  CAS  Google Scholar 

  9. Preis, M., & Korc, M. (2010). Kinase signaling pathways as targets for intervention in pancreatic cancer. Cancer Biology & Therapy, 9(10), 754–763.

    Article  CAS  Google Scholar 

  10. Rajalingam, K., Schreck, R., Rapp, U. R., & Albert, S. (2007). Ras oncogenes and their downstream targets. Biochimica et Biophysica Acta, 1773(8), 1177–1195. doi:10.1016/j.bbamcr.2007.01.012.

    Article  PubMed  CAS  Google Scholar 

  11. Chappell, W. H., Steelman, L. S., Long, J. M., Kempf, R. C., Abrams, S. L., Franklin, R. A., et al. (2011). Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget, 2(3), 135–164.

    PubMed  Google Scholar 

  12. Ramos, J. W. (2008). The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. The International Journal of Biochemistry & Cell Biology, 40(12), 2707–2719. doi:10.1016/j.biocel.2008.04.009.

    Article  CAS  Google Scholar 

  13. Johannessen, C. M., Boehm, J. S., Kim, S. Y., Thomas, S. R., Wardwell, L., Johnson, L. A., et al. (2010). COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature, 468(7326), 968–972. doi:10.1038/nature09627.

    Article  PubMed  CAS  Google Scholar 

  14. Coles, L. C., & Shaw, P. E. (2002). PAK1 primes MEK1 for phosphorylation by Raf-1 kinase during cross-cascade activation of the ERK pathway. Oncogene, 21(14), 2236–2244. doi:10.1038/sj.onc.1205302.

    Article  PubMed  CAS  Google Scholar 

  15. Schafer, R., & Sers, C. (2011). RAS oncogene-mediated deregulation of the transcriptome: from molecular signature to function. Advances in Enzyme Regulation, 51(1), 126–136. doi:10.1016/j.advenzreg.2010.11.005.

    Article  PubMed  Google Scholar 

  16. Owens, D. M., & Keyse, S. M. (2007). Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene, 26(22), 3203–3213. doi:10.1038/sj.onc.1210412.

    Article  PubMed  CAS  Google Scholar 

  17. Calvo, F., Agudo-Ibanez, L., & Crespo, P. (2010). The Ras–ERK pathway: understanding site-specific signaling provides hope of new anti-tumor therapies. Bioessays, 32(5), 412–421. doi:10.1002/bies.200900155.

    Article  PubMed  CAS  Google Scholar 

  18. Roberts, P. J., & Der, C. J. (2007). Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene, 26(22), 3291–3310. doi:10.1038/sj.onc.1210422.

    Article  PubMed  CAS  Google Scholar 

  19. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674. doi:10.1016/j.cell.2011.02.013.

    Article  PubMed  CAS  Google Scholar 

  20. Roovers, K., & Assoian, R. K. (2000). Integrating the MAP kinase signal into the G1 phase cell cycle machinery. Bioessays, 22(9), 818–826. doi:10.1002/1521-1878(200009)22:9<818::AID-BIES7>3.0.CO;2-6.

    Article  PubMed  CAS  Google Scholar 

  21. Mirza, A. M., Gysin, S., Malek, N., Nakayama, K., Roberts, J. M., & McMahon, M. (2004). Cooperative regulation of the cell division cycle by the protein kinases RAF and AKT. Molecular and Cellular Biology, 24(24), 10868–10881. doi:10.1128/MCB.24.24.10868-10881.2004.

    Article  PubMed  CAS  Google Scholar 

  22. Maurer, G., Tarkowski, B., & Baccarini, M. (2011). Raf kinases in cancer—roles and therapeutic opportunities. Oncogene, 30(32), 3477–3488. doi:10.1038/onc.2011.160 onc2011160.

    Article  PubMed  CAS  Google Scholar 

  23. Wang, S., Ghosh, R. N., & Chellappan, S. P. (1998). Raf-1 physically interacts with Rb and regulates its function: a link between mitogenic signaling and cell cycle regulation. Molecular and Cellular Biology, 18(12), 7487–7498.

    PubMed  CAS  Google Scholar 

  24. Ballif, B. A., & Blenis, J. (2001). Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth & Differentiation, 12(8), 397–408.

    CAS  Google Scholar 

  25. Balmanno, K., & Cook, S. J. (2009). Tumour cell survival signalling by the ERK1/2 pathway. Cell Death and Differentiation, 16(3), 368–377. doi:10.1038/cdd.2008.148.

    Article  PubMed  CAS  Google Scholar 

  26. Allan, L. A., Morrice, N., Brady, S., Magee, G., Pathak, S., & Clarke, P. R. (2003). Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nature Cell Biology, 5(7), 647–654. doi:10.1038/ncb1005 ncb1005.

    Article  PubMed  CAS  Google Scholar 

  27. Sahu, R. P., Batra, S., Kandala, P. K., Brown, T. L., & Srivastava, S. K. (2011). The role of K-ras gene mutation in TRAIL-induced apoptosis in pancreatic and lung cancer cell lines. Cancer Chemotherapy and Pharmacology, 67(2), 481–487. doi:10.1007/s00280-010-1463-1.

    Article  PubMed  CAS  Google Scholar 

  28. Maida, Y., Kyo, S., Kanaya, T., Wang, Z., Yatabe, N., Tanaka, M., et al. (2002). Direct activation of telomerase by EGF through Ets-mediated transactivation of TERT via MAP kinase signaling pathway. Oncogene, 21(26), 4071–4079. doi:10.1038/sj.onc.1205509.

    Article  PubMed  CAS  Google Scholar 

  29. Ellenrieder, V., Hendler, S. F., Boeck, W., Seufferlein, T., Menke, A., Ruhland, C., et al. (2001). Transforming growth factor beta1 treatment leads to an epithelial–mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation. Cancer Research, 61(10), 4222–4228.

    PubMed  CAS  Google Scholar 

  30. Cano, C. E., Motoo, Y., & Iovanna, J. L. (2010). Epithelial-to-mesenchymal transition in pancreatic adenocarcinoma. The Scientific World Journal, 10, 1947–1957. doi:10.1100/tsw.2010.183.

    Article  CAS  Google Scholar 

  31. Viala, E., & Pouyssegur, J. (2004). Regulation of tumor cell motility by ERK mitogen-activated protein kinases. Annals of the New York Academy of Sciences, 1030, 208–218. doi:10.1196/annals.1329.027.

    Article  PubMed  Google Scholar 

  32. Lim, J. H., Lee, E. S., You, H. J., Lee, J. W., Park, J. W., & Chun, Y. S. (2004). Ras-dependent induction of HIF-1alpha785 via the Raf/MEK/ERK pathway: a novel mechanism of Ras-mediated tumor promotion. Oncogene, 23(58), 9427–9431. doi:10.1038/sj.onc.1208003.

    Article  PubMed  CAS  Google Scholar 

  33. Danovi, S. A., Wong, H. H., & Lemoine, N. R. (2008). Targeted therapies for pancreatic cancer. British Medical Bulletin, 87, 97–130. doi:10.1093/bmb/ldn027.

    Article  PubMed  CAS  Google Scholar 

  34. Wong, H. H., & Lemoine, N. R. (2009). Pancreatic cancer: molecular pathogenesis and new therapeutic targets. Nature Reviews. Gastroenterology & Hepatology, 6(7), 412–422. doi:10.1038/nrgastro.2009.89.

    Article  CAS  Google Scholar 

  35. Lee, J., Jang, K. T., Ki, C. S., Lim, T., Park, Y. S., Lim, H. Y., et al. (2007). Impact of epidermal growth factor receptor (EGFR) kinase mutations, EGFR gene amplifications, and KRAS mutations on survival of pancreatic adenocarcinoma. Cancer, 109(8), 1561–1569. doi:10.1002/cncr.22559.

    Article  PubMed  CAS  Google Scholar 

  36. Luo, G., Long, J., Qiu, L., Liu, C., Xu, J., & Yu, X. (2011). Role of epidermal growth factor receptor expression on patient survival in pancreatic cancer: a meta-analysis. Pancreatology, 11(6), 595–600. doi:10.1159/000334465.

    Article  PubMed  Google Scholar 

  37. Hezel, A. F., Kimmelman, A. C., Stanger, B. Z., Bardeesy, N., & Depinho, R. A. (2006). Genetics and biology of pancreatic ductal adenocarcinoma. Genes & Development, 20(10), 1218–1249. doi:10.1101/gad.1415606.

    Article  CAS  Google Scholar 

  38. Luttges, J., Schlehe, B., Menke, M. A., Vogel, I., Henne-Bruns, D., & Kloppel, G. (1999). The K-ras mutation pattern in pancreatic ductal adenocarcinoma usually is identical to that in associated normal, hyperplastic, and metaplastic ductal epithelium. Cancer, 85(8), 1703–1710. doi:10.1002/(SICI)1097-0142(19990415)85:8<1703::AID-CNCR9>3.0.CO;2-R.

    Article  PubMed  CAS  Google Scholar 

  39. Morris, J. P. T., Wang, S. C., & Hebrok, M. (2010). KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nature Reviews. Cancer, 10(10), 683–695. doi:10.1038/nrc2899.

    Article  PubMed  CAS  Google Scholar 

  40. Furukawa, T., Sunamura, M., Motoi, F., Matsuno, S., & Horii, A. (2003). Potential tumor suppressive pathway involving DUSP6/MKP-3 in pancreatic cancer. American Journal of Pathology, 162(6), 1807–1815. doi:10.1016/S0002-9440(10)64315-5.

    Article  PubMed  CAS  Google Scholar 

  41. Delpu, Y., Hanoun, N., Lulka, H., Sicard, F., Selves, J., Buscail, L., et al. (2011). Genetic and epigenetic alterations in pancreatic carcinogenesis. Current Genomics, 12(1), 15–24. doi:10.2174/138920211794520132CG-12-15.

    Article  PubMed  CAS  Google Scholar 

  42. Matthaios, D., Zarogoulidis, P., Balgouranidou, I., Chatzaki, E., & Kakolyris, S. (2011). Molecular pathogenesis of pancreatic cancer and clinical perspectives. Oncology, 81(3–4), 259–272. doi:10.1159/000334449.

    Article  PubMed  CAS  Google Scholar 

  43. Steele, C. W., Oien, K. A., McKay, C. J., & Jamieson, N. B. (2011). Clinical potential of microRNAs in pancreatic ductal adenocarcinoma. Pancreas, 40(8), 1165–1171. doi:10.1097/MPA.0b013e3182218ffb00006676-201111000-00002.

    Article  PubMed  CAS  Google Scholar 

  44. Jones, S., Zhang, X., Parsons, D. W., Lin, J. C., Leary, R. J., Angenendt, P., et al. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 321(5897), 1801–1806. doi:10.1126/science.1164368.

    Article  PubMed  CAS  Google Scholar 

  45. Mazur, P. K., & Siveke, J. T. (2011). Genetically engineered mouse models of pancreatic cancer: unravelling tumour biology and progressing translational oncology. Gut. doi:10.1136/gutjnl-2011-300756.

  46. Skoulidis, F., Cassidy, L. D., Pisupati, V., Jonasson, J. G., Bjarnason, H., Eyfjord, J. E., et al. (2010). Germline Brca2 heterozygosity promotes Kras(G12D)-driven carcinogenesis in a murine model of familial pancreatic cancer. Cancer Cell, 18(5), 499–509. doi:10.1016/j.ccr.2010.10.015.

    Article  PubMed  CAS  Google Scholar 

  47. Matsuzaki, K. (2011). Smad phosphoisoform signaling specificity: the right place at the right time. Carcinogenesis, 32(11), 1578–1588. doi:10.1093/carcin/bgr172.

    Article  PubMed  CAS  Google Scholar 

  48. Zhao, S., Venkatasubbarao, K., Lazor, J. W., Sperry, J., Jin, C., Cao, L., et al. (2008). Inhibition of STAT3 Tyr705 phosphorylation by Smad4 suppresses transforming growth factor beta-mediated invasion and metastasis in pancreatic cancer cells. Cancer Research, 68(11), 4221–4228. doi:10.1158/0008-5472.CAN-07-5123.

    Article  PubMed  CAS  Google Scholar 

  49. Bachet, J. B., Marechal, R., Demetter, P., Bonnetain, F., Couvelard, A., Svrcek, M., et al. (2012). Contribution of CXCR4 and SMAD4 in predicting disease progression pattern and benefit from adjuvant chemotherapy in resected pancreatic adenocarcinoma. Annals of Oncology. doi:10.1093/annonc/mdr617.

  50. Wagner, E. F., & Nebreda, A. R. (2009). Signal integration by JNK and p38 MAPK pathways in cancer development. Nature Reviews. Cancer, 9(8), 537–549. doi:10.1038/nrc2694.

    Article  PubMed  CAS  Google Scholar 

  51. Ding, X. Z., & Adrian, T. E. (2001). MEK/ERK-mediated proliferation is negatively regulated by P38 map kinase in the human pancreatic cancer cell line, PANC-1. Biochemical and Biophysical Research Communications, 282(2), 447–453. doi:10.1006/bbrc.2001.4595 S0006-291X(01)94595-4.

    Article  PubMed  CAS  Google Scholar 

  52. Handra-Luca, A., Lesty, C., Hammel, P., Sauvanet, A., Rebours, V., Martin, A., et al. (2012). Biological and prognostic relevance of mitogen-activated protein kinases in pancreatic adenocarcinoma. Pancreas, 41(3), 416–421. doi:10.1097/MPA.0b013e318238379d.

    Article  PubMed  CAS  Google Scholar 

  53. del Barco Barrantes, I., & Nebreda, A. R. (2012). Roles of p38 MAPKs in invasion and metastasis. Biochemical Society Transactions, 40(1), 79–84. doi:10.1042/BST20110676.

    Article  PubMed  Google Scholar 

  54. Duner, S., Lopatko Lindman, J., Ansari, D., Gundewar, C., & Andersson, R. (2010). Pancreatic cancer: the role of pancreatic stellate cells in tumor progression. Pancreatology, 10(6), 673–681. doi:10.1159/000320711.

    Article  PubMed  CAS  Google Scholar 

  55. Jaster, R. (2004). Molecular regulation of pancreatic stellate cell function. Molecular Cancer, 3, 26. doi:10.1186/1476-4598-3-26.

    Article  PubMed  Google Scholar 

  56. Vasseur, S. T. R., Tournaire, R., & Iovanna, J. L. (2010). Hypoxia induced tumor metabolic switch contributes to pancreatic cancer aggressiveness. Cancers, 2(4), 2138–2152. doi:10.3390/cancers2042138.

    Article  CAS  Google Scholar 

  57. Bergers, G., & Hanahan, D. (2008). Modes of resistance to anti-angiogenic therapy. Nature Reviews. Cancer, 8(8), 592–603. doi:10.1038/nrc2442.

    Article  PubMed  CAS  Google Scholar 

  58. Xiong, H. Q., Rosenberg, A., LoBuglio, A., Schmidt, W., Wolff, R. A., Deutsch, J., et al. (2004). Cetuximab, a monoclonal antibody targeting the epidermal growth factor receptor, in combination with gemcitabine for advanced pancreatic cancer: a multicenter phase II Trial. Journal of Clinical Oncology, 22(13), 2610–2616. doi:10.1200/JCO.2004.12.040 22/13/2610.

    Article  PubMed  CAS  Google Scholar 

  59. Philip, P. A., Benedetti, J., Corless, C. L., Wong, R., O’Reilly, E. M., Flynn, P. J., et al. (2010). Phase III study comparing gemcitabine plus cetuximab versus gemcitabine in patients with advanced pancreatic adenocarcinoma: Southwest Oncology Group-directed intergroup trial S0205. Journal of Clinical Oncology, 28(22), 3605–3610. doi:10.1200/JCO.2009.25.7550.

    Article  PubMed  CAS  Google Scholar 

  60. Van Cutsem, E., Vervenne, W. L., Bennouna, J., Humblet, Y., Gill, S., Van Laethem, J. L., et al. (2009). Phase III trial of bevacizumab in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. Journal of Clinical Oncology, 27(13), 2231–2237. doi:10.1200/JCO.2008.20.0238.

    Article  PubMed  Google Scholar 

  61. Graeven, U., Kremer, B., Sudhoff, T., Killing, B., Rojo, F., Weber, D., et al. (2006). Phase I study of the humanised anti-EGFR monoclonal antibody matuzumab (EMD 72000) combined with gemcitabine in advanced pancreatic cancer. British Journal of Cancer, 94(9), 1293–1299. doi:10.1038/sj.bjc.6603083.

    Article  PubMed  CAS  Google Scholar 

  62. Safran, H., Iannitti, D., Ramanathan, R., Schwartz, J. D., Steinhoff, M., Nauman, C., et al. (2004). Herceptin and gemcitabine for metastatic pancreatic cancers that overexpress HER-2/neu. Cancer Investigation, 22(5), 706–712.

    Article  PubMed  CAS  Google Scholar 

  63. Fountzilas, G., Bobos, M., Kalogera-Fountzila, A., Xiros, N., Murray, S., Linardou, H., et al. (2008). Gemcitabine combined with gefitinib in patients with inoperable or metastatic pancreatic cancer: a phase II Study of the Hellenic Cooperative Oncology Group with biomarker evaluation. Cancer Investigation, 26(8), 784–793. doi:10.1080/07357900801918611.

    Article  PubMed  CAS  Google Scholar 

  64. Ignatiadis, M., Polyzos, A., Stathopoulos, G. P., Tselepatiotis, E., Christophylakis, C., Kalbakis, K., et al. (2006). A multicenter phase II study of docetaxel in combination with gefitinib in gemcitabine-pretreated patients with advanced/metastatic pancreatic cancer. Oncology, 71(3–4), 159–163. doi:10.1159/000106064.

    Article  PubMed  CAS  Google Scholar 

  65. Brell, J. M., Matin, K., Evans, T., Volkin, R. L., Kiefer, G. J., Schlesselman, J. J., et al. (2009). Phase II study of docetaxel and gefitinib as second-line therapy in gemcitabine pretreated patients with advanced pancreatic cancer. Oncology, 76(4), 270–274. doi:10.1159/000206141.

    Article  PubMed  CAS  Google Scholar 

  66. Safran, H. M. T., Bahary, N., Whiting, S., Lopez, C. D., Sun, W., Charpentier, K., Shipley, J., Anderson, E., McNulty, B., Schumacher, A., Clark, A., Vakharia, J., Kennedy, T., & Sio, T. (2011). Lapatinib and gemcitabine for metastatic pancreatic cancer: a phase II study. American Journal of Clinical Oncology, 34(1), 50–52. doi:10.1097/COC.0b013e3181d26b01.

    Article  CAS  Google Scholar 

  67. Van Cutsem, E., van de Velde, H., Karasek, P., Oettle, H., Vervenne, W. L., Szawlowski, A., et al. (2004). Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. Journal of Clinical Oncology, 22(8), 1430–1438. doi:10.1200/JCO.2004.10.112 JCO.2004.10.112.

    Article  PubMed  Google Scholar 

  68. Martin, N. E., Brunner, T. B., Kiel, K. D., DeLaney, T. F., Regine, W. F., Mohiuddin, M., et al. (2004). A phase I trial of the dual farnesyltransferase and geranylgeranyltransferase inhibitor L-778,123 and radiotherapy for locally advanced pancreatic cancer. Clinical Cancer Research, 10(16), 5447–5454. doi:10.1158/1078-0432.CCR-04-024810/16/5447.

    Article  PubMed  CAS  Google Scholar 

  69. Toubaji, A., Achtar, M., Provenzano, M., Herrin, V. E., Behrens, R., Hamilton, M., et al. (2008). Pilot study of mutant ras peptide-based vaccine as an adjuvant treatment in pancreatic and colorectal cancers. Cancer Immunology, Immunotherapy, 57(9), 1413–1420. doi:10.1007/s00262-008-0477-6.

    Article  PubMed  CAS  Google Scholar 

  70. Alberts, S. R., Schroeder, M., Erlichman, C., Steen, P. D., Foster, N. R., Moore, D. F., Jr., et al. (2004). Gemcitabine and ISIS-2503 for patients with locally advanced or metastatic pancreatic adenocarcinoma: a North Central Cancer Treatment Group phase II trial. Journal of Clinical Oncology, 22(24), 4944–4950. doi:10.1200/JCO.2004.05.034.

    Article  PubMed  CAS  Google Scholar 

  71. McCubrey, J. A., Steelman, L. S., Abrams, S. L., Chappell, W. H., Russo, S., Ove, R., et al. (2009). Emerging Raf inhibitors. Expert Opinion on Emerging Drugs, 14(4), 633–648. doi:10.1517/14728210903232633.

    Article  PubMed  CAS  Google Scholar 

  72. Kindler, H. L., Wroblewski, K., Wallace, J. A., Hall, M. J., Locker, G., Nattam, S., et al. (2012). Gemcitabine plus sorafenib in patients with advanced pancreatic cancer: a phase II trial of the University of Chicago Phase II Consortium. Investigational New Drugs, 30(1), 382–386. doi:10.1007/s10637-010-9526-z.

    Article  PubMed  CAS  Google Scholar 

  73. El-Khoueiry, A. B., Ramanathan, R. K., Yang, D. Y., Zhang, W., Shibata, S., Wright, J. J., et al. (2012). A randomized phase II of gemcitabine and sorafenib versus sorafenib alone in patients with metastatic pancreatic cancer. Investigational New Drugs, 30(3), 1175–1183. doi:10.1007/s10637-011-9658-9.

    Article  PubMed  CAS  Google Scholar 

  74. Lang, S. A., Schachtschneider, P., Moser, C., Mori, A., Hackl, C., Gaumann, A., et al. (2008). Dual targeting of Raf and VEGF receptor 2 reduces growth and metastasis of pancreatic cancer through direct effects on tumor cells, endothelial cells, and pericytes. Molecular Cancer Therapeutics, 7(11), 3509–3518. doi:10.1158/1535-7163.MCT-08-0373.

    Article  PubMed  CAS  Google Scholar 

  75. Sebolt-Leopold, J. S., & Herrera, R. (2004). Targeting the mitogen-activated protein kinase cascade to treat cancer. Nature Reviews. Cancer, 4(12), 937–947. doi:10.1038/nrc1503.

    Article  PubMed  CAS  Google Scholar 

  76. McCubrey, J. A., Steelman, L. S., Abrams, S. L., Chappell, W. H., Russo, S., Ove, R., et al. (2010). Emerging MEK inhibitors. Expert Opinion on Emerging Drugs, 15(2), 203–223. doi:10.1517/14728210903282760.

    Article  PubMed  CAS  Google Scholar 

  77. Montagut, C., & Settleman, J. (2009). Targeting the RAF–MEK–ERK pathway in cancer therapy. Cancer Letters, 283(2), 125–134. doi:10.1016/j.canlet.2009.01.022.

    Article  PubMed  CAS  Google Scholar 

  78. Lorusso, P. M., Adjei, A. A., Varterasian, M., Gadgeel, S., Reid, J., Mitchell, D. Y., et al. (2005). Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies. Journal of Clinical Oncology, 23(23), 5281–5293. doi:10.1200/JCO.2005.14.415.

    Article  PubMed  CAS  Google Scholar 

  79. Rinehart, J., Adjei, A. A., Lorusso, P. M., Waterhouse, D., Hecht, J. R., Natale, R. B., et al. (2004). Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. Journal of Clinical Oncology, 22(22), 4456–4462. doi:10.1200/JCO.2004.01.185.

    Article  PubMed  CAS  Google Scholar 

  80. LoRusso, P. M., Krishnamurthi, S. S., Rinehart, J. J., Nabell, L. M., Malburg, L., Chapman, P. B., et al. (2010). Phase I pharmacokinetic and pharmacodynamic study of the oral MAPK/ERK kinase inhibitor PD-0325901 in patients with advanced cancers. Clinical Cancer Research, 16(6), 1924–1937. doi:10.1158/1078-0432.CCR-09-1883.

    Article  PubMed  CAS  Google Scholar 

  81. Trujillo, J. I. (2011). MEK inhibitors: a patent review 2008–2010. Expert Opinion on Therapeutic Patents, 21(7), 1045–1069. doi:10.1517/13543776.2011.577068.

    Article  PubMed  CAS  Google Scholar 

  82. Huang, W., Yang, A. H., Matsumoto, D., Collette, W., Marroquin, L., Ko, M., et al. (2009). PD0325901, a mitogen-activated protein kinase kinase inhibitor, produces ocular toxicity in a rabbit animal model of retinal vein occlusion. Journal of Ocular Pharmacology and Therapeutics, 25(6), 519–530. doi:10.1089/jop. 2009.0060.

    Article  PubMed  CAS  Google Scholar 

  83. Faivre, S., Ronot, M., Dreyer, C., Serrate, C., Hentic, O., Bouattour, M., et al. (2012). Imaging response in neuroendocrine tumors treated with targeted therapies: the experience of sunitinib. Targeted Oncology, 7(2), 127–133. doi:10.1007/s11523-012-0216-y.

    Article  PubMed  Google Scholar 

  84. Engelman, J. A., & Settleman, J. (2008). Acquired resistance to tyrosine kinase inhibitors during cancer therapy. Current Opinion in Genetics and Development, 18(1), 73–79. doi:10.1016/j.gde.2008.01.004.

    Article  PubMed  CAS  Google Scholar 

  85. Diep, C. H., Munoz, R. M., Choudhary, A., Von Hoff, D. D., & Han, H. (2011). Synergistic effect between erlotinib and MEK inhibitors in KRAS wild-type human pancreatic cancer cells. Clinical Cancer Research, 17(9), 2744–2756. doi:10.1158/1078-0432.CCR-10-2214.

    Article  PubMed  CAS  Google Scholar 

  86. Wang, H., Daouti, S., Li, W. H., Wen, Y., Rizzo, C., Higgins, B., et al. (2011). Identification of the MEK1(F129L) activating mutation as a potential mechanism of acquired resistance to MEK inhibition in human cancers carrying the B-RafV600E mutation. Cancer Research, 71(16), 5535–5545. doi:10.1158/0008-5472.CAN-10-4351.

    Article  PubMed  CAS  Google Scholar 

  87. Little, A. S., Balmanno, K., Sale, M. J., Smith, P. D., & Cook, S. J. (2012). Tumour cell responses to MEK1/2 inhibitors: acquired resistance and pathway remodelling. Biochemical Society Transactions, 40(1), 73–78. doi:10.1042/BST20110647.

    Article  PubMed  CAS  Google Scholar 

  88. Solit, D. B., Garraway, L. A., Pratilas, C. A., Sawai, A., Getz, G., Basso, A., et al. (2006). BRAF mutation predicts sensitivity to MEK inhibition. Nature, 439(7074), 358–362. doi:10.1038/nature04304.

    Article  PubMed  CAS  Google Scholar 

  89. Jing, J., Greshock, J., Holbrook, J. D., Gilmartin, A., Zhang, X., McNeil, E., et al. (2012). Comprehensive predictive biomarker analysis for MEK inhibitor GSK1120212. Molecular Cancer Therapeutics, 11(3), 720–729. doi:10.1158/1535-7163.MCT-11-0505.

    Article  PubMed  CAS  Google Scholar 

  90. Yip-Schneider, M. T., Lin, A., & Marshall, M. S. (2001). Pancreatic tumor cells with mutant K-ras suppress ERK activity by MEK-dependent induction of MAP kinase phosphatase-2. Biochemical and Biophysical Research Communications, 280(4), 992–997. doi:10.1006/bbrc.2001.4243S0006-291X(01)94243-3.

    Article  PubMed  CAS  Google Scholar 

  91. Yeh, J. J., Routh, E. D., Rubinas, T., Peacock, J., Martin, T. D., Shen, X. J., et al. (2009). KRAS/BRAF mutation status and ERK1/2 activation as biomarkers for MEK1/2 inhibitor therapy in colorectal cancer. Molecular Cancer Therapeutics, 8(4), 834–843. doi:10.1158/1535-7163.MCT-08-0972.

    Article  PubMed  CAS  Google Scholar 

  92. Loboda, A., Nebozhyn, M., Klinghoffer, R., Frazier, J., Chastain, M., Arthur, W., et al. (2010). A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors. BMC Medical Genomics, 3, 26. doi:10.1186/1755-8794-3-26.

    Article  PubMed  Google Scholar 

  93. Holt, S. V., Logie, A., Odedra, R., Heier, A., Heaton, S. P., Alferez, D., et al. (2012). The MEK1/2 inhibitor, selumetinib (AZD6244; ARRY-142886), enhances anti-tumour efficacy when combined with conventional chemotherapeutic agents in human tumour xenograft models. British Journal of Cancer, 106(5), 858–866. doi:10.1038/bjc.2012.8 bjc20128.

    Article  PubMed  CAS  Google Scholar 

  94. Urick, M. E., Chung, E. J., Shield, W. P., 3rd, Gerber, N., White, A., Sowers, A., et al. (2011). Enhancement of 5-fluorouracil-induced in vitro and in vivo radiosensitization with MEK inhibition. Clinical Cancer Research, 17(15), 5038–5047. doi:10.1158/1078-0432.CCR-11-0358.

    Article  PubMed  CAS  Google Scholar 

  95. Zhao, Y., Shen, S., Guo, J., Chen, H., Greenblatt, D. Y., Kleeff, J., et al. (2006). Mitogen-activated protein kinases and chemoresistance in pancreatic cancer cells. Journal of Surgical Research, 136(2), 325–335. doi:10.1016/j.jss.2006.06.031.

    Article  PubMed  CAS  Google Scholar 

  96. Wee, S., Jagani, Z., Xiang, K. X., Loo, A., Dorsch, M., Yao, Y. M., et al. (2009). PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Research, 69(10), 4286–4293. doi:10.1158/0008-5472.CAN-08-4765.

    Article  PubMed  CAS  Google Scholar 

  97. Halilovic, E., She, Q. B., Ye, Q., Pagliarini, R., Sellers, W. R., Solit, D. B., et al. (2010). PIK3CA mutation uncouples tumor growth and cyclin D1 regulation from MEK/ERK and mutant KRAS signaling. Cancer Research, 70(17), 6804–6814. doi:10.1158/0008-5472.CAN-10-0409.

    Article  PubMed  CAS  Google Scholar 

  98. Chang, Q., Chen, E., & Hedley, D. W. (2009). Effects of combined inhibition of MEK and mTOR on downstream signaling and tumor growth in pancreatic cancer xenograft models. Cancer Biology & Therapy, 8(20), 1893–1901.

    Article  CAS  Google Scholar 

  99. Chang, Q., Chapman, M. S., Miner, J. N., & Hedley, D. W. (2010). Antitumour activity of a potent MEK inhibitor RDEA119/BAY 869766 combined with rapamycin in human orthotopic primary pancreatic cancer xenografts. BMC Cancer, 10, 515. doi:10.1186/1471-2407-10-515.

    Article  PubMed  Google Scholar 

  100. Hatzivassiliou, G., Liu, B., O’Brien, C., Spoerke, J. M., Hoeflich, K. P., Haverty, P. M., et al. (2012). ERK inhibition overcomes acquired resistance to MEK inhibitors. Molecular Cancer Therapeutics, 11(5), 1143–1154. doi:10.1158/1535-7163.MCT-11-1010.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Foundation Nelia & Amadeo Barleta (FNAB) and by the Association pour l’Aide à la Recherche & l’Enseignement en Cancérologie (AAREC). The authors thank Sarah MacKenzie for the editing of the manuscript. The authors also sincerely thank Prof. Sandrine Faivre, Prof. Philippe Ruszniewski, Dr. Maria Eugenia Riveiro, Dr. Maria Serova, and Dr. Armand de Gramont for the thorough review and wise criticisms of the manuscript, which participated to the quality of this review.

Conflict of interest

Pascal Hammel is a consultant for Novartis, Pfizer, and Ipsen; Sandrine Faivre is a consultant for Merck, Pfizer, Novartis, Bayer, and Lilly; Philippe Ruszniewski is a consultant for Novartis, Pfizer, and Ipsen; and Eric Raymond is a consultant for Pfizer, Novartis, Bayer, and Lilly. Other authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Raymond.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neuzillet, C., Hammel, P., Tijeras-Raballand, A. et al. Targeting the Ras–ERK pathway in pancreatic adenocarcinoma. Cancer Metastasis Rev 32, 147–162 (2013). https://doi.org/10.1007/s10555-012-9396-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-012-9396-2

Keywords

Navigation