Skip to main content

Advertisement

Log in

Dimerization Between Vasopressin V1b and Corticotropin Releasing Hormone Type 1 Receptors

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

1. Increasing evidence indicates that guanyl protein coupled receptors (GPCRs), including members of the vasopressin (VP) receptor family can act as homo- and heterodimers. Regulated expression and interaction of pituitary VP V1b receptor (V1bR) and corticotropin releasing hormone receptor type 1 (CRHR1) are critical for hypothalamic pituitary adrenal (HPA) axis adaptation, but it is unknown whether this involves physical interaction between these receptors.

2. Bioluminescence resonance energy transfer (BRET) experiments using V1bR and CRHR1 fused to either Renilla luciferase (Rluc) or yellow fluorescent protein (YFP) at the N-terminus, but not the carboxyl-terminus, revealed specific interaction (BRET50 = 0.39 ± 0.08, V1bR) that was inhibited by untagged V1b or CRHR1 receptors, suggesting homo- and heterodimerization. The BRET data were confirmed by coimmunoprecipitation experiments using fully bioactive receptors tagged at the aminoterminus with c-myc and Flag epitopes, demonstrating specific homodimerization of the V1b receptor and heterodimerization of the V1b receptor with CRHR1 receptors.

3. Heterodimerization between V1bR and CRHR1 is not ligand dependent since stimulation with CRH and AVP had no effect on coimmunoprecipitation. In membranes obtained from cells cotransfected with CRHR1 and V1bR, incubation with the heterologous nonpeptide antagonist did not alter the binding affinity or capacity of the receptor.

4. The data demonstrate that V1bR and CRHR1 can form constitutive homo- and heterodimers and suggests that the heterodimerization does not influence the binding properties of these receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  • AbdAlla, S., Lother, H., and Quitterer, U. (2000). AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature 407:94–98.

    Article  Google Scholar 

  • Abou-Samra, A. B., Harwood, J. P., Manganiello, V. C., Catt, K. J., and Aguilera, G. (1987). Phorbol 12-myristate 13-acetate and vasopressin potentiate the effect of corticotropin-releasing factor on cyclic AMP production in rat anterior pituitary cells: Mechanisms of action. J. Biol. Chem. 262:1129–1136.

    Google Scholar 

  • Aguilera, G. (1994). Regulation of pituitary ACTH secretion during chronic stress. Front. Neuroendocrinol. 15:321–350.

    Article  Google Scholar 

  • Aguilera, G., Pham, Q., and Rabadan-Diehl, C. (1994). Regulation of pituitary vasopressin receptors during chronic stress: Relationship to corticotroph responsiveness. J. Neuroendocrinol. 6:299–304.

    Article  Google Scholar 

  • Ayoub, M. A., Couturier, C., Lucas-Meunier, E., Angers, S., Fossier, P., Bouvier, M., and Jockers, R. (2002). Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. J. Biol. Chem. 277:21522–21528.

    Article  CAS  Google Scholar 

  • Berrada, K., Plesnicher, C. L., Luo, X., and Thibonnier, M. (2000). Dynamic interaction of human vasopressin/oxytocin receptor subtypes with G protein-coupled receptor kinases and protein kinase C after agonist stimulation. J. Biol. Chem. 275:27229–27237.

    Google Scholar 

  • Bilezikjian, L. M., Blount, A. L., and Vale, W. W. (1987). The cellular actions of vasopressin on corticotrophs of the anterior pituitary: Resistance to glucocorticoid action. Mol. Endocrinol. 1:451–458.

    Google Scholar 

  • Breit, A., Lagace, M., and Bouvierm, M. (2004). Hetero-oligomerization between beta2- and beta3-adrenergic receptors generates a beta-adrenergic signaling unit with distinct functional properties. J. Biol. Chem. 279:28756–28765.

    Article  CAS  Google Scholar 

  • Bulenger, S., Marullo, S., and Bouvier, M. (2005). Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. Trends Pharmacol. Sci. 26:131–137.

    Article  CAS  Google Scholar 

  • Calver, A. R., Robbins, M. J., Cosio, C., Rice, S. Q., Babbs, A. J., Hirst, W. D., Boyfield, I., Wood, M. D., Russell, R. B., Price, G. W., Couve, A., Moss, S. J., and Pangalos, M. N. (2001). The C-terminal domains of the GABA(b) receptor subunits mediate intracellular trafficking but are not required for receptor signaling. J. Neurosci. 21:1203–1210.

    Google Scholar 

  • Castro, M. G., Morrisonm, E., Perone, M. J., Brown, O. A., Murray, C. A., Ahmed, I., Perkins, A. V., Europe-Finner, G., Lowenstein, P. R., and Linton, E. A. (1996). Corticotrophin-releasing hormone receptor type 1: Generation and characterization of polyclonal antipeptide antibodies and their localization in pituitary cells and cortical neurones in vitro. J. Neuroendocrinol. 8:521–531.

    Article  Google Scholar 

  • Childs, G. V., and Unabia, G. (1989). Activation of protein kinase C and L calcium channels enhances binding of biotinylated corticotropin-releasing hormone by anterior pituitary corticotropes. Mol. Endocrinol. 3:117–126.

    Google Scholar 

  • Childs, G. V., Westlund, K. N., and Unabia, G. (1989). Characterization of anterior pituitary target cells for arginine vasopressin: including cells that store adrenocorticotropin, thyrotropin-beta, and both hormones. Endocrinology 125:554–559.

    Article  Google Scholar 

  • Cvejic, S., and Devi, L. (1997). Dimerization of the delta opioid receptor: Implication for a role in receptor internalization. J. Biol. Chem. 272:26959–26964.

    Article  Google Scholar 

  • Flores, M., Carvallo, P., and Aguilera, G. (1990). Physicochemical characterization of corticotrophin releasing factor receptor in rat pituitary and brain. Life Sci. 47:2035–2040.

    Article  Google Scholar 

  • George, S. R., Fan, T., Xie, Z., Tse, R., Tam, V., Varghese, G., and O’Dowd, B. F. (2000). Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. J. Biol. Chem. 275:26128–26135.

    Article  Google Scholar 

  • Gillies, G. E., Linton, E. A., and Lowry, P. J. (1982). Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature 299:355–357.

    Article  Google Scholar 

  • Gines, S., Hillion, J., Torvinen, M., Le Crom, S., Casado, V., Canela, E. I., Rondin, S., Lew, J. Y., Watson, S., Zoli, M., Agnati, L. F., Verniera, P., Lluis, C., Ferre, S., Fuxe, K., and Franco, R. (2000). Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc. Natl. Acad. Sci. USA. 97:8606–8611.

    Article  Google Scholar 

  • Gomes, I., Jordan, B. A., Gupta, A., Rios, C., Trapaidze, N., and Devi, L. A. (2001). G protein coupled receptor dimerization: implications in modulating receptor function. J. Mol. Med. 79:226–242.

    Article  Google Scholar 

  • Green, J. L., Figueroa, J. P., Massman, G. A., Schwartz, J., and Rose, J. C. (2000). Corticotropin-releasing hormone type I receptor messenger ribonucleic acid and protein levels in the ovine fetal pituitary: Ontogeny and effect of chronic cortisol administration. Endocrinology 141:2870–2876.

    Article  Google Scholar 

  • Grigoriadis, D. E., and De Souza, E. B. (1988). The brain corticotropin-releasing factor (CRF) receptor is of lower apparent molecular weight than the CRF receptor in anterior pituitary. Evidence from chemical cross-linking studies. J. Biol. Chem. 263:10927–10931.

    Google Scholar 

  • Hague, C., Uberti, M. A., Chen, Z., Hall, R. A., and Minneman, K. P. (2004). Cell surface expression of alpha1D-adrenergic receptors is controlled by heterodimerization with alpha1B-adrenergic receptors. J. Biol. Chem. 279:15541–15549.

    Article  CAS  Google Scholar 

  • Hanyaloglu, A. C., Seeber, R. M., Kohout, T. A., Lefkowitz, R. J., and Eidne, K. A. (2002). Homo- and hetero-oligomerization of thyrotropin-releasing hormone (TRH) receptor subtypes. Differential regulation of beta-arrestins 1 and 2. J. Biol. Chem. 277:50422–50430.

    Article  Google Scholar 

  • Hebert, T. E., Moffett, S., Morello, J. P., Loisel, T. P., Bichet, D. G., Barret, C., and Bouvier, M. (1996). A peptide derived from a beta2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J. Biol. Chem. 271:16384–16392.

    Article  PubMed  Google Scholar 

  • Jia, L. G., Canny, B. J., Orth, D. N., and Leong, D. A. (1991). Distinct classes of corticotropes mediate corticotropin-releasing hormone- and arginine vasopressin-stimulated adrenocorticotropin release. Endocrinology 128:197–203.

    Article  Google Scholar 

  • Jordan, B. A., Cvejic, S., and Devi, L. (2000). Opioids and their complicated receptor complexes. Neuropsychopharmacology 23:S5–S18.

    Article  Google Scholar 

  • Kaupmann, K., Malitschek, B., Schuler, V., Heid, J., Froestl, W., Beck, P., Mosbacher, J., Bischoff, S., Kulik, A., Shigemoto, R., Karschin, A., and Bettler, B. (1998). GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 396:683–687.

    Article  Google Scholar 

  • Konig, M., Mahan, L. C., Marsg, J. W., Fink, J. S., and Brownstein, M. J. (1991). Method for identifying ligands that bind to cloned Gs- or Gi-coupled receptors. Mol. Cell. Neurosci. 2:331–337.

    Article  Google Scholar 

  • Kraetke, O., Wiesner, B., Eichhorst, J., Furkert, J., Bienert, M., and Beyermann, M. (2005). Dimerization of corticotropin-releasing factor receptor type 1 is not coupled to ligand binding. J. Recept. Signal Transduct. Res. 25:251–276.

    Article  CAS  Google Scholar 

  • Kroeger, K. M., Hanyaloglu, A. C., Seeber, R. M., Miles, L. E., and Eidne, K. A. (2001). Constitutive and agonist-dependent homo-oligomerization of the thyrotropin-releasing hormone receptor. Detection in living cells using bioluminescence resonance energy transfer. J. Biol. Chem. 276:12736–12743.

    Article  Google Scholar 

  • Kroeger, K. M., Pfleger, K. D., and Eidne, K. A. (2003). G-protein receptor oligomerization in neuroendocrine pathways. Front. Neuroendocrinol. 24:254–278.

    Article  CAS  Google Scholar 

  • Liu, J. P., Engler, D., Funder, J. W., and Robinson, P. J. (1992). Evidence that the stimulation by arginine vasopressin of the release of adrenocorticotropin from the ovine anterior pituitary involves the activation of protein kinase C. Mol. Cell. Endocrinol. 87:35–47.

    Article  Google Scholar 

  • Lolait, S. J., O’Carroll, A. M., Mahan, L. C., Felder, C. C., Button, D. C., Young, W. S., 3rd, Mezey, E., and Brownstein, M. J. (1995). Extrapituitary expression of the rat V1b vasopressin receptor gene. Proc. Natl. Acad. Sci. USA. 92:6783–6787.

    Article  Google Scholar 

  • Nelson, G., Chandrashekar, J., Hoon, M. A., Feng, L., Zhao, G., Ryba, N. J., and Zuker, C. S. (2002). An amino-acid taste receptor. Nature 416:199–202.

    Article  CAS  Google Scholar 

  • North, W. G., Fay, M. J., and Du, J. (1999). MCF-7 breast cancer cells express normal forms of all vasopressin receptors plus an abnormal V2R. Peptides 20:837–842.

    Article  Google Scholar 

  • Patel, R. C., Kumar, U., Lamb, D. C., Eid, J. S., Rocheville, M., Grant, M., Rani, A., Hazlett, T., Patel, S. C., Gratton, E., and Patel, Y. C. (2002). Ligand binding to somatostatin receptors induces receptor-specific oligomer formation in live cells. Proc. Natl. Acad. Sci. USA. 99:3294–3299.

    Article  CAS  Google Scholar 

  • Pfeiffer, M., Koch, T., Schroder, H., Laugsch, M., Hollt, V., and Schulz, S. (2002). Heterodimerization of somatostatin and opioid receptors cross-modulates phosphorylation, internalization, and desensitization. J. Biol. Chem. 277:19762–19772.

    Article  CAS  Google Scholar 

  • Robert, J., Auzan, C., Ventura, M. A., and Clauser, E. (2005). Mechanisms of cell-surface rerouting of an ER-retained mutant of the vasopressin V1b/V3 receptor by a pharmacological chaperone. J. Biol. Chem. 280:2300–2308.

    Article  CAS  Google Scholar 

  • Rocheville, M., Lange, D. C., Kumar, U., Patel, S. C., Patel, R. C., and Patel, Y. C. (2000a). Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 288:154–157.

    Article  Google Scholar 

  • Rocheville, M., Lange, D. C., Kumar, U., Sasi, R., Patel, R. C., and Patel, Y. C. (2000b). Subtypes of the somatostatin receptor assemble as functional homo- and heterodimers. J. Biol. Chem. 275:7862–7869.

    Article  Google Scholar 

  • Salahpour, A., Angers, S., and Bouvier, M. (2000). Functional significance of oligomerization of G-protein-coupled receptors. Trends Endocrinol. Metab. 11:163–168.

    Article  Google Scholar 

  • Sydow, S., Radulovic, J., Dautzenberg, F. M., and Spiess, J. (1997). Structure–function relationship of different domains of the rat corticotropin-releasing factor receptor. Mol. Brain Res. 52:182–193.

    Article  Google Scholar 

  • Terrillon, S., Barberis, C., and Bouvier, M. (2004). Heterodimerization of V1a and V2 vasopressin receptors determines the interaction with beta-arrestin and their trafficking patterns. Proc. Natl. Acad. Sci. USA. 101:1548–1553.

    Article  CAS  Google Scholar 

  • Terrillon, S., Durroux, T., Mouillac B., Breit, A., Ayoub, M. A., Taulan, M., Jockers, R., Barberis, C., and Bouvier, M. (2003). Oxytocin and vasopressin V1a and V2 receptors form constitutive homo- and heterodimers during biosynthesis. Mol. Endocrinol. 17:677–691.

    Article  CAS  Google Scholar 

  • van de Pavert, S. A., Clarke, I. J., Rao, A., Vrana, K. E., and Schwartz, J. (1997). Effects of vasopressin and elimination of corticotropin-releasing hormone-target cells on pro-opiomelanocortin mRNA levels and adrenocorticotropin secretion in ovine anterior pituitary cells. J. Endocrinol. 154:139–147.

    Article  Google Scholar 

  • White, J. H., Wise, A., Main, M. J., Green, A., Fraser, N. J., Disney, G. H., Barnes, A. A., Emson, P., Foord, S. M., and Marshall, F. H. (1998). Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature 396:679–682.

    Article  CAS  Google Scholar 

  • Xu, G., Rabadan-Diehl, C., Nikodemova, M., Wynn, P., Spiess, J., and Aguilera, G. (2001). Inhibition of corticotropin releasing hormone type-1 receptor translation by an upstream AUG triplet in the 5′ untranslated region. Mol. Pharmacol. 59:485–492.

    Google Scholar 

  • Young, S. F., Smith, J. L., Figueroa, J. P., and Rose, J. C. (2003). Ontogeny and effect of cortisol on vasopressin-1b receptor expression in anterior pituitaries of fetal sheep. AJP—Regul. Integr. Comp. Physiol. 284:R51–R56.

    Google Scholar 

  • Zeng, F., and Wess, J. (2000). Molecular aspects of muscarinic receptor dimerization. Neuropsychopharmacology 23:S19–S31.

    Article  Google Scholar 

  • Zhu, C., Cook, L. B., and Hinkle, P. M. (2002). Dimerization and phosphorylation of thyrotropin-releasing hormone receptors are modulated by agonist stimulation. J. Biol. Chem. 277:28228–28237.

    Article  CAS  Google Scholar 

  • Zhu, W., Zeng, X., Zheng, M., and Xiao, R. P. (2005). Heterodimerization of beta1- and beta2-adrenergic receptor subtypes optimizes beta-adrenergic modulation of cardiac contractility. Circ. Res. 97:244–251.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Hans Zingg and Dominic Devost (McGill University, Montreal, Canada) for the oxytocin receptor fusion constructs and helpful advice, Dr Claudine Serradeil-LeGal (Sanofi-Synthelabo, Toulouse, France) for providing the nonpeptide V1bR antagonist, SSR149415 and Ying Liu, SEP, NICHD, for her valuable help. This research was supported by the Intramural Research Program, NICHD, NIH. S.F.Y. is supported by the Pharmacology Research Associate Training Program of the National Institute of General Medical Sciences, NIH, Bethesda, MD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greti Aguilera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, S.F., Griffante, C. & Aguilera, G. Dimerization Between Vasopressin V1b and Corticotropin Releasing Hormone Type 1 Receptors. Cell Mol Neurobiol 27, 439–461 (2007). https://doi.org/10.1007/s10571-006-9135-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-006-9135-8

KEY WORDS

Navigation