Skip to main content

Advertisement

Log in

NMDA Receptors are Expressed in Lymphocytes Activated Both In Vitro and In Vivo

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

There is increasing evidence showing that the interplay between neuronal and immune systems may be regulated by neuromediators. However, little is known about the involvement of glutamatergic system in such neuro-immune relations. In the present study, we have shown that some intact lymphocytes express N-methyl-d-aspartate activated receptors (NMDA receptors), an important constituent of glutamatergic system. The activation of lymphocytes with phytohemagglutinin (PHA) induces a time-dependent increase in the amount of NMDA receptor presenting cells, and NMDA stimulates this process. Immune response of such lymphocytes is suppressed and the amount of cells producing interferon γ (IFN-γ) in vitro is decreased to the level corresponding to intact (non-activated) cells. Furthermore, lymphocytes in the region of inflammation, induced by spinal cord injury (SCI), are also NMDA-positive. We suggest that expression of NMDA receptors in lymphocytes is regulated by central nervous system, which controls the inflammation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bartholdi D, Schwab ME (1997) Expression of pro-inflammatory cytokine and chemokine mRNA upon experimental spinal cord injury in mouse: an in situ hybridization study. Eur J Neurosci 9(7):1422–1438

    Article  CAS  PubMed  Google Scholar 

  • Basu S, Dasgupta P (2000) Dopamine, a neurotransmitter, influences the immune system. J Neuroimmunol 102:113–124

    Article  CAS  PubMed  Google Scholar 

  • Bellinger D, Lorton D, Horn L, Felten S, Felten D (1997) Vasoactive intestinal polypeptide (VIP) innervation of rat spleen, thymus, and lymph nodes. Peptides 18:1139–1149

    Article  CAS  PubMed  Google Scholar 

  • Bethea J, Dietrich W (2002) Targeting the host inflammatory response in traumatic spinal cord injury. Curr Opin Neurol 15(3):355–360

    Article  PubMed  Google Scholar 

  • Bigini P, Gardoni F, Barbera S, Cagnotto A, Fumagalli E, Longhi A, Corsi MM, Luca M, Mennini T (2006) Expression of AMPA and NMDA receptor subunits in the cervical spinal cord of wobler mice. BMC Neurosci 7:71

    Article  PubMed  CAS  Google Scholar 

  • Blight AR (1985) Delayed demyelination and macrophage invasion: a candidate for secondary cell damage in spinal cord injury. Cent Nerv Syst Trauma 2(4):299–315

    CAS  PubMed  Google Scholar 

  • Boldyrev AA (2009) Molecular mechanisms of homocysteine toxicity. Biochemistry (Moscow) 74(6):589–598

    Article  CAS  Google Scholar 

  • Boldyrev A, Kazey V, Leinsoo T, Mashkina A, Tyulina O, Johnson P, Tuneva J, Chittur S, Carpenter D (2004) Rodent lymphocytes express functionally active glutamate receptors. Biochem Biophys Res Commun 324(1):133–139

    Article  CAS  PubMed  Google Scholar 

  • Carr L, Tucker A, Fernandez-Botran R (2003) In vivo administration of L-DOPA or dopamine decreases the number of splenic IFN-γ producing cells. J Neuroimmunol 137:87–93

    Article  CAS  PubMed  Google Scholar 

  • Derijk R, Berkenbosch F (1991) The immune-hypothalamo-pituitary-adrenal axis and autoimmunity. Int J Neurosci 59(1–3):91–100

    Article  CAS  PubMed  Google Scholar 

  • Dokur M, Boyadjieva N, Sarkar D (2004) Catecholaminergic control of NK cell cytolytic activity regulatory factors in the spleen. J Neuroimmunol 151:148–157

    Article  CAS  PubMed  Google Scholar 

  • Elward K, Gasque P (2003) “Eat me” and “don’t eat me” signals govern the innate immune response and tissue repair in the CNS: emphasis on the critical role of the complement system. Mol Immunol 40(2–4):85–94

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt B (2008) The blood-central nervous system barriers actively control immune cell entry into the central nervous system. Curr Pharm 14(16):1555–1565

    Article  CAS  Google Scholar 

  • Gendelman H (2002) Neural immunity: friend or foe? J Neurovirol 8:474–479

    Article  CAS  PubMed  Google Scholar 

  • Hamann A (2000) Adhesion molecules and chemokines in lymphocyte trafficking. Harwood Acad. Publ., NY

    Google Scholar 

  • Hickey W, Hsu B, Kimura H (1991) T-lymphocyte entry into the central nervous system. J Neurosci Res 28(2):254–260

    Article  CAS  PubMed  Google Scholar 

  • Hinoi E, Takarada T, Ueshima T, Tsuchihashi Y, Yoneda Y (2004) Glutamate signaling in peripheral tissues. Eur J Biochem 271:1–13

    Article  CAS  PubMed  Google Scholar 

  • Jones T, McDaniel E, Popovich P (2005) Inflammatory-mediated injury and repair in the traumatically injured spinal cord. Curr Pharm Des 11:1223–1236

    Article  CAS  PubMed  Google Scholar 

  • Karp S, Masu M, Eki T, Ozawa K, Nakanishi S (1993) Molecular cloning and chromosomal localization of the key subunit of the human N-methyl-d-aspartate receptor. J Biol Chem 268(5):3728–3733

    CAS  PubMed  Google Scholar 

  • Levite M (2000) Nerve driven immunity: the direct effects of neurotransmitters on T-cell function. New York Acad Sci 917:307–321

    Article  CAS  Google Scholar 

  • Lodge P, Sriram S (1996) Regulation of microglial activation by TGFbeta, IL-10, and CSF-1. J Leukoc Biol 60(4):502–508

    CAS  PubMed  Google Scholar 

  • Lombardi G, Dianzani Ch, Miglio G, et al. (2001) Characterization of ionotropic glutamate receptor in human lymphocytes. Br J Pharmacol 133(6):936–944

    Article  Google Scholar 

  • Mashkina A, Tyulina O, Solovyova T, Kovalenko E, Kanevski L, Johnson P, Boldyrev A (2007) The excitotoxic effect of NMDA on human lymphocyte immune function. Neurochem Int 51(6–7):356–360

    Article  CAS  PubMed  Google Scholar 

  • Miglio G, Varsaldi F, Lombardi G (2005) Human T lymphocytes express N-methyl-d-aspartate receptors functionally active in controlling T cell activation. Biochem Biophys Res Commun 338(4):1875–1883

    Article  CAS  PubMed  Google Scholar 

  • Munck A, Guyre P (1991) Glucocorticoids and immune function. In: Ader R, Felten DL, Cohen N (eds) Psychoneuroimmunology, vol 2, 2nd edn. Academic Press, San Diego, pp 447–474

    Google Scholar 

  • Murgo A, Faith R, Plotnikoff N (1986) Enkephalins: mediators of stress-induced immunomodulation. In: Plotnikoff P, Faith RE, Murgo A, Good R (eds) Enkephalins and endorphins. stress and immune system. Plenum Press, NY, pp 221–239

    Google Scholar 

  • Pavlov V, Wang H, Czura C, Friedman S, Tracey K (2003) The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med 9(5–8):125–134

    CAS  PubMed  Google Scholar 

  • Qureshi I, Chen H, Brown A, Fitzgerald R, Zhang X, Breckenridge J, Kazi R, Crocker A, Stühlinger M, Lin K, Cooke J, Eidt J, Moursi M (2005) Homocysteine-induced vascular dysregulation is mediated by the NMDA receptor. Vasc Med 10(3):215–223

    Article  PubMed  Google Scholar 

  • Roof RL, Hall ED (2000) Gender differences in acute CNS trauma and stroke: neuroprotective effects of estrogen and progesterone. J Neurotrauma 17(5):367–388

    Article  CAS  PubMed  Google Scholar 

  • Saeed R, Varma S, Peng-Nemeroff T, Sherry B, Balakhaneh D, Huston J, Tracey K, Al-Abed Y, Metz C (2005) Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. J Exp Med 201(7):1113–1123

    Article  CAS  PubMed  Google Scholar 

  • Saganová K, Orendácová J, Sulla I, Filipcík P, Cízková D, Vanický I (2009) Effects of long-term FK506 administration on functional and histopathological outcome after spinal cord injury in adult rat. Cell Mol Neurobiol 29(6–7):1045–1051

    Article  PubMed  CAS  Google Scholar 

  • Seghal A, Berger M (2000) Basic concepts of immunology and neuroimmunology. Neurosurg Focus 9(6):1

    Google Scholar 

  • Shimizu N, Hori T, Nakame H (1994) An interleukin-1 beta-induced noradrenaline release in the spleen is mediated by brain corticotropin releasing factor: an in vivo microdialysis study in conscious rats. Brain Behav Immun 8:14–23

    Article  CAS  PubMed  Google Scholar 

  • Spreux-Varoquaux O, Bensimon G, Lacomblez L, Salachas F, Pradat PF, Le Forestier N, Marouan A, Dib M, Meininger V (2002) Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis: a reappraisal using a new HPLC method with coulometric detection in a large cohort of patients. J Neurol Sci 193(2):73–78

    Article  CAS  PubMed  Google Scholar 

  • Sroga JM, Jones TB, Kigerl KA, McGaughy VM, Popovich PG (2003) Rats and mice exhibit distinct inflammatory reactions after spinal cord injury. J Comp Neurol 462(2):223–240

    Article  PubMed  Google Scholar 

  • Tarlov I, Klinger H, Vitale S (1953) Spinal cord compression studies. I. Experimental techniques to produce acute and gradual compression. AMA Arch Neurol Psychiatry 70:813–819

    CAS  PubMed  Google Scholar 

  • Teunis M, Heijnen C, Cools A, Kavelaars A (2004) Reduced splenic natural killer cell activity in rats with a hyperreactive dopaminergic system. Psychoneuroendocrinology 29(8):1058–1064

    Article  CAS  PubMed  Google Scholar 

  • Tracey K (2002) The inflammatory reflex. Nature 420:853–859

    Article  CAS  PubMed  Google Scholar 

  • Tuneva E, Bychkova O, Boldyrev A (2003) Effect of NMDA on production of reactive oxygen species by human lymphocytes. Bull Exp Biol Med 136(2):159–161

    Article  CAS  PubMed  Google Scholar 

  • Vanicky I, Urdzikova L, Saganova K, Cizkova D, Galik J (2001) A simple and reproducible model of spinal cord injury induced by epidural balloon inflation in the rat. J Neurotrauma 18(12):1399–1407

    Article  CAS  PubMed  Google Scholar 

  • Vladychenskaya E, Tyulina O, Boldyrev A (2006) Effect of homocysteine and homocysteic acid on glutamate receptors on rat lymphocytes. Bull Exp Biol Med 142(1):47–50

    Article  CAS  PubMed  Google Scholar 

  • Volterra A, Trotti D, Racagni G (1994) Glutamate uptake is inhibited by arachidonic acid and oxygen radicals via two distinct and additive mechanisms. Mol Pharmacol 46:986–992

    CAS  PubMed  Google Scholar 

  • Weller R, Engelhardt B, Phillips M (1996) Lymphocyte targeting of the central nervous system: a review of afferent and efferent CNS-immune pathways. Brain Pathol 6(3):275–288

    Article  CAS  PubMed  Google Scholar 

  • Wrona D (2006) Neural–immune interactions: an integrative view of the bidirectional relationship between the brain and immune systems. J Neuroimmunol 172:38–58

    Article  CAS  PubMed  Google Scholar 

  • Yachnin S, Svenson RH (1972) The immunological and physicochemical properties of mitogenic proteins derived from Phaseolus vulgaris. Immunology 22(5):871–883

    CAS  PubMed  Google Scholar 

  • Young W (1993) Secondary injury mechanisms in acute spinal cord injury. J Emerg Med 11(1):13–22

    PubMed  Google Scholar 

  • Zimring J, Kapp L, Yamada M, Wess J, Kapp J (2005) Regulation of CD8+ cytolytic T lymphocyte differentiation by a cholinergic pathway. J Neuroimmunol 164:66–75

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Boldyrev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mashkina, A.P., Cizkova, D., Vanicky, I. et al. NMDA Receptors are Expressed in Lymphocytes Activated Both In Vitro and In Vivo. Cell Mol Neurobiol 30, 901–907 (2010). https://doi.org/10.1007/s10571-010-9519-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-010-9519-7

Keywords

Navigation