Skip to main content

Advertisement

Log in

SorLA in Glia: Shared Subcellular Distribution Patterns with Caveolin-1

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

SorLA is an established sorting and trafficking protein in neurons with demonstrated relevance to Alzheimer’s disease (AD). It shares these roles with the caveolins, markers of membrane rafts microdomains. To further our knowledge on sorLA’s expression and traffic, we studied sorLA expression in various cultured glia and its relation to caveolin-1 (cav-1), a caveolar microdomain marker. RT-PCR and immunoblots demonstrated sorLA expression in rat C6 glioma, primary cultures of rat astrocytes (PCRA), and human astrocytoma 1321N1 cells. PCRA were determined to express the highest levels of sorLA’s message. Induction of differentiation of C6 cells into an astrocyte-like phenotype led to a significant decrease in sorLA’s mRNA and protein expression. A set of complementary experimental approaches establish that sorLA and cav-1 directly or indirectly interact in glia: (1) co-fractionation in light-density membrane raft fractions of rat C6 glioma, PCRA, and human 1321N1 astrocytoma cells; (2) a subcellular co-localization distribution pattern in vesicular perinuclear compartments seen via confocal imaging in C6 and PCRA; (3) additional confocal analysis in C6 cells suggesting that the perinuclear compartments correspond to their co-localization in early endosomes and the trans-Golgi; and; (4) co-immunoprecipitation data strongly supporting their direct or indirect physical interaction. These findings further establish that sorLA is expressed in glia and that it shares its subcellular distribution pattern with cav-1. A direct or indirect cav-1/sorLA interaction could modify the trafficking and sorting functions of sorLA in glia and its proposed neuroprotective role in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersen OM, Reiche J, Schmidt V, Gotthardt M, Spoelgen R, Behlke J, von Arnim CA, Breiderhoff T, Jansen P, Wu X, Bales KR, Cappai R, Masters CL, Gliemann J, Mufson EJ, Hyman BT, Paul SM, Nykjaer A, Willnow TE (2005) Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc Natl Acad Sci 102:13461–13466

    Article  PubMed  CAS  Google Scholar 

  • Beffert U, Stolt PC, Herz J (2004) Functions of lipoprotein receptors in neurons. J Lipid Res 45:403–409

    Article  PubMed  CAS  Google Scholar 

  • Bettens K, Brouwers N, Engelborghs S, De Deyn PP, Van Broeckhoven C, Sleegers K (2008) SORL1 is genetically associated with increased risk for late-onset Alzheimer disease in the Belgian population. Hum Mutat 29:769–770

    Article  PubMed  Google Scholar 

  • Bujo H, Saito Y (2000) Markedly induced expression of LR11 in atherosclerosis. J Atheroscler Thromb 7:21–25

    PubMed  CAS  Google Scholar 

  • Cam JA, Bu G (2006) Modulation of beta-amyloid precursor protein trafficking and processing by the low-density lipoprotein receptor family. Mol Neurodegener 1:8

    Article  PubMed  Google Scholar 

  • Chorna NE, Santiago-Pérez LI, Erb L, Seye C, Neary JT, Sun GY, Weisman GA, González FA (2004) P2Y2 receptors activate neuroprotective mechanisms in astrocytic cells. J Neurochem 91:119–132

    Article  PubMed  CAS  Google Scholar 

  • Costes SV, Daelemans D, Cho EH, Dobbin Z, Pavlakis G, Lockett S (2004) Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys J 86:3993–4003

    Article  PubMed  CAS  Google Scholar 

  • Eddleston M, Mucke L (1993) Molecular profile of reactive astrocytes: implications for their role in neurological disease. Neuroscience 54(1):15–36

    Article  PubMed  CAS  Google Scholar 

  • Fellin T, Carmignoto G (2004) Neuron-to astrocyte signaling in the brain represents a distinct multifunctional unit. J Physiol 559:3–15

    Article  PubMed  CAS  Google Scholar 

  • Gaudreault S, Dea D, Poirier J (2004) Increased caveolin-1 expression in Alzheimer’s disease brain. Neurobiol Aging 25(6):753–759

    Article  PubMed  CAS  Google Scholar 

  • Gaul G, Dutly F, Frei K, Foguet M, Lübbert H (1992) APP RNA splicing is not affected by differentiation of neurons and glia in culture. FEBS Lett 307:329–332

    Article  PubMed  CAS  Google Scholar 

  • Hansson E, Rönnbäck L (2003) Glial neuronal signaling in the central nervous system. FASEB J 17:341–348

    Article  PubMed  CAS  Google Scholar 

  • He X, Li F, Chang WP, Tang J (2005) GGA proteins mediate the recycling pathway of memapsin 2 (BACE). J Biol Chem 280:11696–11703

    Article  PubMed  CAS  Google Scholar 

  • Herz J, Chen Y, Masiulis I, Zhou L (2009) Expanding functions of lipoprotein receptors. J Lipid Res 50:S287–S292

    Article  PubMed  Google Scholar 

  • Huse J, Doms RW (2001) Neurotoxic traffic: uncovering the mechanics of amyloid production in Alzheimer’s disease. Traffic 2:75–81

    Article  PubMed  CAS  Google Scholar 

  • Ikezu T, Trapp BD, Song KS, Schlegel A, Lisanti MP, Okamoto T (1998) Caveolae, plasma membrane microdomains for α-secretase-mediated processing of the amyloid precursor protein. J Biol Chem 273:10485–10495

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen L, Madsen P, Nielsen MS, Geraerts WP, Glieman J, Smit AB, Petersen CM (2002) The sorLA cytoplasmic domain interacts with the GGA-1 and -2 and defines minimun requirements for GGA binding. FEBS Lett 511(1–3):155–158

    Article  PubMed  CAS  Google Scholar 

  • Kanaki T, Bujo H, Hirayama S, Ishii I, Morisaki N, Schneider WJ, Saito Y (1999) Expression of LR11, a mosaic LDL receptor family member, is markedly increased in atherosclerotic lesions. Arterioscler Thromb Vasc Biol 19:2687–2695

    Article  PubMed  CAS  Google Scholar 

  • Kang MJ, Chung YH, Hwang CI, Murata M, Fujimoto T, Mook-Jung IH, Cha CI, Park WY (2006) Caveolin-1 upregulation in senescent neurons alters amyloid precursor protein processing. Exp Mol Med 38:126–133

    PubMed  CAS  Google Scholar 

  • Kato S, Gondo T, Hoshii Y, Takahashi M, Yamada M, Ishihara T (1998) Confocal observation of senile plaques in Alzheimer’s disease: senile plaque morphology and relationship between senile plaques and astrocytes. Pathol Int 48(5):332–340

    Article  PubMed  CAS  Google Scholar 

  • Kölsch H, Jessen F, Wiltfang J, Lewczuk P, Dichgans M, Teipel SJ, Kornhuber J, Frölich L, Heuser I, Peters O, Wiese B, Kaduszkiewicz H, van den Bussche H, Hüll M, Kurz A, Rüther E, Henn FA, Maier W (2009) Association of SORL1 gene variants with Alzheimer’s disease. Brain Res 1264:1–6

    Article  PubMed  Google Scholar 

  • Lackland J., Dreyfus CF (2002) Trophins as mediators of astrocytes effects in the aging and regenerating brain. In De Vellis JS (ed) Neuroglia in the aging brain, 1st edn. Human Press, Totowa, pp 199–216

  • Lee JL, Cheng R, Schupf N, Manly J, Lantigua R, Stern Y, Rogaeva E, Wakutani Y, Farrer L, George-Hyslop PS, Mayeux R (2007) The association between genetic variants in sorL1 and Alzheimer’s disease in an urban, multiethnic, community-based cohort. Arch Neurol 64:501–506

    Article  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta c(t)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Macdonald TJ, Pollack IF, Okada H, Bhattacharya S, Lyons-Weileret J (2007) Progression-associated genes in astrocytoma identified by novel microarray gene expression data reanalysis. Meth Mol Biol 377:203–221

    Article  CAS  Google Scholar 

  • Manders EM, Stap J, Brakenhoff GJ, van Driel R, Aten JA (1992) Dynamics of three-dimensional replication patterns during the S-phase, analyzed by double labeling of DNA and confocal microscopy. J Cell Sci 103:857–862

    PubMed  CAS  Google Scholar 

  • Marcusson E, Horazdovsky B, Cereghino J, Gharakhanian E, Emr S (1994) The sorting receptor yeast vacuolar carboxypeptidase Y is encoded by the VSP10 gene. Cell 77(4):579–586

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Chan SL (2003) Neuronal and glial calcium signaling in Alzheimer’s disease. Cell Calcium 34:385–397

    Article  PubMed  CAS  Google Scholar 

  • Melgren RL (2008) Detergent-resistant membrane subfractions containing proteins of plasma membrane, mitochondrial, and internal membrane origins. J Biochem Biophys Methods 70:1029–1036

    Article  Google Scholar 

  • Morato E, Mayor F (1993) Production of the Alzheimer’s ß-amyloid peptide by C6 glioma cells. FEBS Lett 336:275–278

    Article  PubMed  CAS  Google Scholar 

  • Motoi Y, Aizawa T, Haga S, Nakamura S, Namba Y, Ikeda K (1999) Neuronal localization of a novel mosaic apolipoprotein E receptor, LR11, in rat and human brain. Brain Res 833:209–215

    Article  PubMed  CAS  Google Scholar 

  • Mrak RE, Griffin WS (2005) Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 26:349–354

    Article  PubMed  CAS  Google Scholar 

  • Nagele RG, Wegiel J, Venkataraman V, Imaki H, Wang KC, Wegiel J (2004) Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease. Neurobiol Aging 25(5):663–674

    Article  PubMed  CAS  Google Scholar 

  • Nichols B (2003) Caveosomes and endocytosis of lipid rafts. J Cell Sci 116:4707–4714

    Article  PubMed  CAS  Google Scholar 

  • Nielsen MS, Gustafsen C, Madsen P, Nyengaard JR, Hermey G, Bakke O, Mari M, Schu P, Pohlmann R, Dennes A, Petersen CM (2007) Sorting by the cytoplasmic domain of the amyloid precursor protein binding receptor SorLA. Mol Cell Biol 27:6842–6851

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama K, Trapp BD, Ikezu T, Ransohoff RM, Tomita T, Iwatsubo T, Kanazawa I, Hsiao KK, Lisanti MP, Okamoto T (1999) Caveolin-3 upregulation activates beta-secretase-mediated cleavage of the amyloid precursor protein in Alzheimer’s disease. J Neurosci 19:6538–6548

    PubMed  CAS  Google Scholar 

  • Offe K, Dodson SE, Shoemaker JT, Fritz JJ, Gearing M, Levey AI, Lah JJ (2006) The lipoprotein receptor LR11 regulates amyloid beta production and amyloid precursor protein traffic in endosomal compartments. J Neurosci 26:1596–1603

    Article  PubMed  CAS  Google Scholar 

  • Parton RK (2004) Caveolae meet endosomes: a stable relationship? Dev Cell 7:458–460

    Article  PubMed  CAS  Google Scholar 

  • Pelkmans L, Kartenbeck J, Helenius A (2001) Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3:473–483

    Article  PubMed  CAS  Google Scholar 

  • Pelkmans L, Burli T, Zerial M, Helenius A (2004) Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 118:767–780

    Article  PubMed  CAS  Google Scholar 

  • Peters PJ, Mironov A Jr, Peretz D, van Donselaar E, Leclerc E, Erpel S, DeArmond SJ, Burton DR, Williamson RA, Vey M et al (2003) Trafficking of prion proteins through a caveolae-mediated endosomal pathway. J Cell Biol 162:703–717

    Article  PubMed  CAS  Google Scholar 

  • Pike LJ (2006) Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J Lipid Res 47:1597–1598

    Article  PubMed  CAS  Google Scholar 

  • Poirier J (1994) Apolipoprotein E in animal models of CNS injury and in Alzheimer’s disease. Trends Neurosci 17:525–530

    Article  PubMed  CAS  Google Scholar 

  • Poirier J (2005) Apolipoprotein E, cholesterol transport and synthesis in sporadic Alzheimer’s disease. Neurobiol Aging 26:355–361

    Article  PubMed  CAS  Google Scholar 

  • Pol A, Calvo M, Lu A, Enrich C (1999) The “early-sorting” endocytic compartment of rat hepatocytes is involved in the intracellular pathway of caveolin-1 (VIP-21). Hepatol 29(6):1848–1857

    Article  CAS  Google Scholar 

  • Rajendran L, Simons K (2009) Membrane trafficking and targeting in Alzheimer’s disease. In St George-Hyslop P et al (eds) Intracellular traffic and neurodegenerative disorders, research and perspectives in Alzheimer’s Disease, Springer, Heidelberg, pp 103–113

  • Rajendran L, Honsho M, Zahn TR, Keller P, Geiger KD, Verkade P, Simons K (2006) Alzheimer’s disease β-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci 103:11172–11177

    Article  PubMed  CAS  Google Scholar 

  • Rajendran L, Knobloch M, Geiger KD, Dienel S, Nitsch R, Simons K, Konietzko U (2007) Increased abeta production leads to intracellular accumulation of abeta in flotillin-1-positive endosomes. Neurodegener Dis 4:164–170

    Article  PubMed  CAS  Google Scholar 

  • Reid PC, Urano Y, Kodama T, Hamakubo T (2007) Alzheimer’s disease: cholesterol, membrane rafts, isoprenoids and statins. J Cell Mol Med 11:383–392

    Article  PubMed  CAS  Google Scholar 

  • Ridet JL, Malhotra SK, Prvat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577

    Article  PubMed  CAS  Google Scholar 

  • Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T, Zou F, Katayama T, Baldwin CT, Cheng R, Hasegawa H et al (2007) The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet 39:168–177

    Article  PubMed  CAS  Google Scholar 

  • Rogaeva E, Meng Y, Lee JH, Mayeux R, Farrer LA, St George-Hyslop P (2009) The sortilin-related receptor SORL1 is functionally and genetically associated with Alzheimer’s Disease. In St George-Hyslop P et al (eds) Intracellular traffic and neurodegenerative disorders, research and perspectives in Alzheimer’s Disease. Springer, Berlin

  • Rohe M, Synowitz M, Glass R, Paul SM, Paul SM, Nykjaer A, Willnow TE (2009) Brain-derived neurotrophic factor reduces amyloidogenc processing through control of sorLA gene expression. J Neurosci 29(49):15472–15478

    Google Scholar 

  • Sager KL, Wu J, Leurgans SE, Rees HD, Gearing M, Mufson EJ, Levey AI, Lah J (2007) Neuronal LR11/sorLA expression is reduced in mild cognitive impairment. Ann Neurol 62:640–647

    Article  PubMed  Google Scholar 

  • Scherzer CR, Offe K, Gearing M, Rees HD, Fang G, Heilman CJ, Schaller C, Bujo H, Levey AI, Lah JJ (2004) Loss of apolipoprotein E receptor LR11 in Alzheimer disease. Arch Neurol 61:1200–1205

    Article  PubMed  Google Scholar 

  • Schmidt V, Sporbert A, Rohe M, Reimer T, Rehm A, Andersen OM, Willnow TE (2007) SorLA/LR11 regulates processing of amyloid precursor protein via interaction with adaptors GGA and PACS-1. J Biol Chem 282:32956–32964

    Article  PubMed  CAS  Google Scholar 

  • Schneider A, Rajendran L, Honsho M, Gralle M, Donnert G, Wouters F, Hell SW, Simons M (2008) Flotillin-dependent clustering of the amyloid precursor protein regulates its endocytosis and amyloidogenic processing in neurons. J Neurosci 28:2874–2882

    Article  PubMed  CAS  Google Scholar 

  • Seaman MN (2004) Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J Cell Biol 165:111–122

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (2004) Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nat Cell Biol 6:1054–1061

    Article  PubMed  CAS  Google Scholar 

  • Silva WI, Maldonado HM, Lisanti MP, De Vellis J, Chompre G, Mayol N, Ortiz M, Velazquez G, Maldonado A, Montalvo J (1999) Identification of caveolae and caveolin in C6 glioma cells. Int J Dev Neurosci 17:705–714

    Article  PubMed  CAS  Google Scholar 

  • Silva WI, Maldonado HM, Velazquez G, Rubio-Davila M, Miranda JD, Aquino E, Mayol N, Cruz-Torres A, Jardón J, Salgado-Villanueva IK (2005) Caveolin isoform expression during differentiation of C6 glioma cells. Int J Dev Neurosci 23:599–612

    Article  PubMed  CAS  Google Scholar 

  • Silva WI, Maldonado HM, Velazquez G, Garcia JO, Gonzalez FA (2007) Caveolins in glial cell model systems: from detection to significance. J Neurochem 103S1:101–112

    Article  Google Scholar 

  • Sofroniew M, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropath 119:7–35

    Article  PubMed  Google Scholar 

  • Spoelgen R, von Arnim CA, Thomas AV, Peltan ID, Koker M, Deng A (2006) Interaction of the cytosolic domains of sorLA/LR11 with the amyloid precursor protein (APP) and beta-secretase beta-site APP-cleaving enzyme. J Neurosci 26(2):418–428

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki H, Bujo H, Kusunoki J, Seimiya K, Kanaki T, Morisaki N, Schneider WJ, Saito Y (1996) Elements of neural adhesion molecules and a yeast vacuolar protein sorting receptor are present in a novel mammalian low-density lipoprotein receptor family member. J Biol Chem 271:24761–24768

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the NIH-MBRS-SCORE grant S06-GM08224 awarded to WIS, and RCMI Program G12RR03051 at UPR-MSC. Graduate students IKS, JOG, and NAM were supported by the NIGMS-MBRS-RISE grant GM61838 at UPR-MSC. The authors are also grateful to Mr. Bismarck Madera for his valuable assistance with the LSCM studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter I. Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salgado, I.K., Serrano, M., García, J.O. et al. SorLA in Glia: Shared Subcellular Distribution Patterns with Caveolin-1. Cell Mol Neurobiol 32, 409–421 (2012). https://doi.org/10.1007/s10571-011-9771-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-011-9771-5

Keywords

Navigation