Skip to main content

Advertisement

Log in

Cellular and Molecular Mechanisms of Gastrointestinal Ulcer Healing

  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

This paper reviews cellular and molecular mechanisms of gastrointestinal ulcer healing. Ulcer healing, a genetically programmed repair process, includes inflammation, cell proliferation, re-epithelialization, formation of granulation tissue, angiogenesis, interactions between various cells and the matrix and tissue remodeling, all resulting in scar formation. All these events are controlled by the cytokines and growth factors (EGF, PDGF, KGF, HGF, TGFβ, VEGF, angiopoietins) and transcription factors activated by tissue injury in spatially and temporally coordinated manner. These growth factors trigger mitogenic, motogenic and survival pathways utilizing Ras, MAPK, PI-3K/Akt, PLC-γ and Rho/Rac/actin signaling. Hypoxia activates pro-angiogenic genes (e.g., VEGF, angiopoietins) via HIF, while serum response factor (SRF) is critical for VEGF-induced angiogenesis, re-epithelialization and muscle restoration. EGF, its receptor, HGF and Cox2 are important for epithelial cell proliferation, migration re-epithelializaton and reconstruction of gastric glands. VEGF, angiopoietins, nitric oxide, endothelin and metalloproteinases are important for angiogenesis, vascular remodeling and mucosal regeneration within ulcer scar. Circulating progenitor cells are also important for ulcer healing. Local gene therapy with VEGF + Ang1 and/or SRF cDNAs dramatically accelerates esophageal and gastric ulcer healing and improves quality of mucosal restoration within ulcer scar. Future directions to accelerate and improve healing include the use of stem cells and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cotran RS, Kumar V, Robbins SL: Gastric ulceration. In Robbins Pathologic Basis of Disease. 5th Edition. RS Cotran, V Kumar, SL Robbins (eds). Philadelphia, Saunders, 1999, pp 298–299, 773–777

  2. Tarnawski A: Cellular mechanisms of gastric ulcer healing. In The Stomach. W Domschke, SJ Konturek (eds). Berlin New York, Springer, 1993, pp 177–192

  3. Tarnawski A: Molecular mechanism of ulcer healing. Drug News Perspect 13:158–168, 2000

    Article  PubMed  Google Scholar 

  4. Tarnawski A, Hollander D, Stachura J, et al.: Vascular and microvascular changes—key factors in the development of acetic acid-induced gastric ulcers in rats. J Clin Gastroenterol 12(1):S148–S157, 1990

    PubMed  Google Scholar 

  5. Baatar D, Kawanaka H, Szabo IL, Pai R, Jones MK, Kitano S, Tarnawski AS: Esophageal ulceration activates genes encoding keratinocyte growth factor and its receptor in rats: a key to esophageal ulcer healing? Gastroenterology 122:458–468, 2002

    Article  PubMed  Google Scholar 

  6. The Molecular and Cellular Biology of Wound Repair. 2nd Edn. RAF Clark (ed). Plenum Press, New York, 1996

  7. Tarnawski A, Hollander D, Krause WJ, Dabros W, Stachura J, Gergely H: “Healed” experimental gastric ulcers remain histologically and ultrastructurally abnormal. J Clin Gastroenterol 12(Suppl 1):139–147, 1990

    Google Scholar 

  8. Tarnawski A, Stachura J, Krause WJ, Douglass TG, Gergely H: Quality of gastric ulcer healing—a new, emerging concept. J Clin Gastroenterol 13(1):S42–S47, 1991

    PubMed  Google Scholar 

  9. Vanwijck R: Surgical biology of wound healing. Bull Mem Acad R Med Belg 56(3–4):175–184, 2001

    Google Scholar 

  10. Taupin D, Wu D-C, Jeon W-K, Devaney K, Wang TC, Podolsky DK: The trefoil gene family are coordinately expressed immediate-early genes: EGF receptor-and MAP kinase-dependent interregulation. J Clin Invest 103:R31–R38, 1990

    Google Scholar 

  11. Wong WM, Playford RJ, Wright NA: Peptide gene expression in gastrointestinal mucosal ulceration: ordered sequence or redundancy? Gut 46:286–292, 2000

    Article  PubMed  Google Scholar 

  12. Tarnawski A, Stachura J, Durbin T, Sarfeh IJ, Gergely H: Increased expression of epidermal growth factor receptor during gastric ulcer healing rats. Gastroenterology 102:695–698, 1992

    PubMed  Google Scholar 

  13. Wright NA, Pike C, Elia G: Induction of a novel epidermal growth factor-secreting cell lineage mucosal ulceration in human gastrointestinal stem cells. Nature 343:82–85, 1990

    Article  PubMed  Google Scholar 

  14. Tarnawski A, Jones K: The role of EGF and its receptor in mucosal protection, adaptation to injury and ulcer healing. Involvement of EGF-R signal transduction pathways. J Clin Gastroenterol 27:S12–S20, 1998

    Article  PubMed  Google Scholar 

  15. Okamoto R, Yajima T, Yamazaki M, Kani T, Mukai M, Okamoto S, Ikeda Y, Hibi T, Inazawa J, Watanabe M: Damaged epithelial regenerated by bone marrow-derived cells in the human gastrointestinal tract. Nature Med 8:1011–1017, 2002

    Article  PubMed  Google Scholar 

  16. Chai J, Baatar D, Tarnawski AS: Serum response factor promotes re-epithelialization and muscular structure restoration during gastric ulcer healing. Gastroenterology 126:1809–1818, 2004

    Article  PubMed  Google Scholar 

  17. Stossel TP: On the crawling of animal cells. Science 260:1986–1994, 1993

    Google Scholar 

  18. Schliwa M: The cytoskeleton. Vienna New York, Springer, 1986, p 326

    Google Scholar 

  19. Polk DB: Epithelial growth factor receptor stimulated intestinal epithelial cell migration requirements phospholipase C activity. Gastroenterology 114:493–502, 1998

    PubMed  Google Scholar 

  20. Bornfeldt KE, Rainses EW, Graves LM, Skinne MP, Krebs EG, Ross R: Platelet derived growth factor. Distinct signal transduction pathways associated with migration versus proliferation. Ann NY Acad Sci 766:416–430, 1995

    PubMed  Google Scholar 

  21. Pai R, Ohta M, Itani RM, Sarfeh IJ, Tarnawski AS: Induction of mitogen activated protein kinase signal transduction pathway during gastric ulcer healing in rat model. Gastroenterology 114:706–713, 1998

    PubMed  Google Scholar 

  22. Tarnawski A, Pai R: Translocation of MAP (ERK-1 and -2) kinases to cell nuclei and activation of c-fos gene during healing of experimental gastric ulcer. J Physiol Pharmacol 49:479–487, 1998

    PubMed  Google Scholar 

  23. Pai R, Jones MK, Tomikawa M, Tarnawski AS: Activation of Raf-1 during experimental gastric ulcer healing is ras-mediated and protein kinase C-independent. Am J Pathol 155:1759–1766, 1999

    PubMed  Google Scholar 

  24. Tarnawski A, Hollander D, Stachura J, Gergely H, Krause WJ, Sarfeh IJ: Role of angiogenesis in healing of experimental gastric ulcer. In Mechanisms of Peptic Ulcer Healing. F Halter, A Garner, GNJ Tytgat (eds). Dordrecht/Boston/London, Kluwer, 1991, pp 165–171

  25. Risau W: Mechanisms of angiogenesis. Nature 386:671–73, 1997

    Article  PubMed  Google Scholar 

  26. Folkman J, D'Amore PA: Blood vessel formation: what is its molecular basis? Cell 87:1153–1155, 1996

    Article  PubMed  Google Scholar 

  27. Ferrara N: Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25:581–611, 2004

    Article  PubMed  Google Scholar 

  28. Chai J, Baatar D, Tarnawski AS: Serum response factor is a critical requirement for VEGF signaling in endothelial cells and VEGF-induced angiogenesis: insight into the mechanisms. FASEB J 18:1264–1266, 2004

    PubMed  Google Scholar 

  29. Folkman J, Szabo S, Stovroff M, McNeil P, Li W, Shing Y: Duodenal ulcer. Discovery of a new mechanisms and development of angiogenic therapy that accelerates healing. Ann Surg 214:414–427, 1991

    PubMed  Google Scholar 

  30. Szabo S, Folkman J, Vattay P, et al.: Accelerated healing of duodenal ulcers by oral administration of basic fibroblast growth factors in rats. Gastroenterology 106:1106–1111, 1994

    PubMed  Google Scholar 

  31. Szabo S, Folkman J, Vincze A, Sandor ZS, Gombos A: Modulation of vascular factors by VEGF/VPF is sufficient for chronic ulcer healing and acute gastroprotection. Gastroenterology 122:A303, 1997

    Google Scholar 

  32. Jones MK, Itani RM, Wang H, Tomikawa S, Sarfeh IJ, Szabo S, Tarnawski A: Activation of VEGF and Ras genes in gastric mucosa during angiogenic response to ethanol injury. Am J Physiol 276(39):G1345–G1355, 1999

    PubMed  Google Scholar 

  33. Jones MK, Wang H, Peskar BM, Levin E, Itani RM, Sarfeh IJ, Tarnawski AS: Inhibition of angiogenesis by NSAIDs. Insight into the mechanisms and implications for cancer growth and ulcer healing. Nature Med 5:1418–1423, 1999

    Article  PubMed  Google Scholar 

  34. Davis S, Aldrich TH, Jones PF, et al.: Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87:1161–1169, 1996

    Article  PubMed  Google Scholar 

  35. Suri C, Jones PF, Patan S, et al.: Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180, 1996

    Article  PubMed  Google Scholar 

  36. Maisonpierre PC, Suri C, Jones PF, et al.: Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60, 1997

    Article  PubMed  Google Scholar 

  37. Procopio WN, Pelavin PI, Lee WMF, Yeildong NM: Angiopoietin-1 and -2 coiled coil domains mediate distinct oligomerization patterns, but fibrinogen-like domains mediate ligand activity. J Biol Chem 274:30196–30201, 1999

    Article  PubMed  Google Scholar 

  38. Oh H, Takagi H, Suzuma K, Otani A, et al.: Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. J Biol Chem 274:15723–15739, 1997

    Google Scholar 

  39. Tarnawski A, Pai R, Jones MK, Szabo I, Sarfeh IJ: Gastric ulceration triggers activation of angiopoietin-1, -2 and Tie2 important for angiogenesis. Gastroenterology 118:A242, 2000

    Google Scholar 

  40. Wen CY, Ito M, Chen L-D, Matsuu M, Shichijo K, Nakayama T, Nakashima M, Xu Z-M, Ohtsuru A, Hsu C-T, Sekine I: Expression of Tie-2 and angiopoietin-1 and -2 in early phase of ulcer healing. J Gastroenterol 38:431–435, 2003

    Article  PubMed  Google Scholar 

  41. Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt AB, Dixit V, Ferrara N: Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 13;273(46):30336–30343, 1998

    Article  Google Scholar 

  42. Basson MD, Modlin IM, Turowski G, Madri JA: Enterocyte-matrix interactions in the healing of mucosal injury. Euro J Gastroenterol Hepatol 5(Suppl 3):S21–S28, 1993

    Google Scholar 

  43. Basson MD: In vitro evidence for matrix regulation of intestinal epithelial biology during mucosal healing. Life Sci 69:3005–3018, 2001

    Article  PubMed  Google Scholar 

  44. Shanin M, Konturek JW, Pohle T, Schuppan D, Herbst H, Domschke W: Remodeling of extracellular matrix in gastric ulceration. Microsc Res Technol 53(6):396–408, 2001

    Article  Google Scholar 

  45. Calabro A, Grappone C, Pellegrini G, Evangelista S, Tramontana M, Schuppan D, Herbst H, Milani S: Spatial and temporal pattern of expression of interstitial collagenase, stromelysin/transin, gelatinase A, and TIMP-1 during experimental gastric ulcer healing. Digestion 70:127–138, 2004

    Article  PubMed  Google Scholar 

  46. Pai R, Wyle FA, Cover TL, Itani RM, Tarnawski A: H. pylori culture supernatant interferes with EGF-activated signal transduction in human gastric Kato III cells. Am J Pathol 152:1617–1624, 1998

    PubMed  Google Scholar 

  47. Tarnawski AS, Jones MK: Inhibition of angiogenesis by NSAIDs: molecular mechanisms and clinical implications. J Mol Med 81:627–636, 2003

    Article  PubMed  Google Scholar 

  48. Schmassmann A, Tarnawski A, Flogerzi B, Sanner M, Varga Halter LF: Antacids in experimental gastric ulcer healing: pharmacokinetics of aluminum and quality of healing. Eur J Gastroenterol Hepatol 5(3):S14–S16, 1993

    Google Scholar 

  49. Tarnawski A, Arakawa Kobayashi TK: Rebamipide treatment activates epidermal growth factor and its receptor expression in normal and ulcerated gastric mucosa. The key mechanisms for its ulcer healing action? Dig Dis Sci 43(9):90S–98S, 1998

    Article  PubMed  Google Scholar 

  50. Arakawa T, Nebiki H, Uchida T, Kimura S, Higuchi K, Kobayashi K: Clinical assessment of quality of ulcer healing: a new endoscopic approach. Eur J Gastroenterol Hepatol 5:S87–S92, 1993

    Google Scholar 

  51. Jones MK, Kawanaka H, Baatar D, Szabo IL, Pai, R, Koh GY, Kim I, Sarfeh IJ, Tarnawski AS: Gene therapy for gastric ulcers. With single local injection of VEGF naked DNA encoding VEGF and angiopoietin-1. Gastroenterology 121:1040–1047, 2001

    Article  PubMed  Google Scholar 

  52. Baatar D, Jones MK, Tsugawa K, Koh Gy, Kim I, Kitano S, Tarnawski AS: Esophageal ulceration triggers expression of hypoxia-inducible factor-1α and activates vascular endothelial growth factor gene. Am J Pathol 161:1449–1457, 2002

    PubMed  Google Scholar 

  53. Szabo S, Deng X, Khomenko T, Yoshida M, Jadus MR, Sandor Z, Gombos Z, Matsumoto H: Gene expression and gene therapy in experimental duodenal ulceration. J Physiol Paris 95(1–6):325–335, 2001

    Article  PubMed  Google Scholar 

  54. Deng X, Szabo S, Khomenko T, Jadus MR, Yoshida M: Gene therapy with adenoviral plasmids or naked DNA of VEGF PDGF accelerates healing of duodenal ulcer in rats. J Pharmacol Exp Ther 311:982–988, 2004

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej S. Tarnawski MD, PhD, DSc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarnawski, A.S. Cellular and Molecular Mechanisms of Gastrointestinal Ulcer Healing. Dig Dis Sci 50 (Suppl 1), S24–S33 (2005). https://doi.org/10.1007/s10620-005-2803-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-005-2803-6

Key Words

Navigation