Skip to main content

Advertisement

Log in

Ascorbate/menadione-induced oxidative stress kills cancer cells that express normal or mutated forms of the oncogenic protein Bcr-Abl. An in vitro and in vivo mechanistic study

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Numerous studies suggest that generation of oxidative stress could be useful in cancer treatment. In this study, we evaluated, in vitro and in vivo, the antitumor potential of oxidative stress induced by ascorbate/menadione (asc/men). This combination of a reducing agent (ascorbate) and a redox active quinone (menadione) generates redox cycling leading to formation of reactive oxygen species (ROS). Asc/men was tested in several cell types including K562 cells (a stable human-derived leukemia cell line), freshly isolated leukocytes from patients with chronic myeloid leukemia, BaF3 cells (a murine pro-B cell line) transfected with Bcr-Abl and peripheral blood leukocytes derived from healthy donors. Although these latter cells were resistant to asc/men, survival of all the other cell lines was markedly reduced, including the BaF3 cells expressing either wild-type or mutated Bcr-Abl. In a standard in vivo model of subcutaneous tumor transplantation, asc/men provoked a significant delay in the proliferation of K562 and BaF3 cells expressing the T315I mutated form of Bcr-Abl. No effect of asc/men was observed when these latter cells were injected into blood of mice most probably because of the high antioxidant potential of red blood cells, as shown by in vitro experiments. We postulate that cancer cells are more sensitive to asc/men than healthy cells because of their lack of antioxidant enzymes, mainly catalase. The mechanism underlying this cytotoxicity involves the oxidative cleavage of Hsp90 with a subsequent loss of its chaperone function thus leading to degradation of wild-type and mutated Bcr-Abl protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Behrend L, Henderson G, Zwacka RM (2003) Reactive oxygen species in oncogenic transformation. Biochem Soc Trans 31(Pt 6):1441–1444

    Article  PubMed  CAS  Google Scholar 

  2. Wu WS (2006) The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev 25(4):695–705

    Article  PubMed  CAS  Google Scholar 

  3. Sun Y, Oberley LW, Elwell JH, Sierra-Rivera E (1989) Antioxidant enzyme activities in normal and transformed mouse liver cells. Int J Cancer 44(6):1028–1033

    Article  PubMed  CAS  Google Scholar 

  4. Verrax J, Cadrobbi J, Marques C, Taper H, Habraken Y, Piette J, Calderon PB (2004) Ascorbate potentiates the cytotoxicity of menadione leading to an oxidative stress that kills cancer cells by a non-apoptotic caspase-3 independent form of cell death. Apoptosis 9(2):223–233

    Article  PubMed  CAS  Google Scholar 

  5. Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, Chiao PJ, Achanta G, Arlinghaus RB, Liu J, Huang P (2006) Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 10(3):241–252

    Article  PubMed  CAS  Google Scholar 

  6. Chen GQ, Zhu J, Shi XG, Ni JH, Zhong HJ, Si GY, Jin XL, Tang W, Li XS, Xong SM, Shen ZX, Sun GL, Ma J, Zhang P, Zhang TD, Gazin C, Naoe T, Chen SJ, Wang ZY, Chen Z (1996) In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML proteins. Blood 88(3):1052–1061

    PubMed  CAS  Google Scholar 

  7. Chandra J, Hackbarth J, Le S, Loegering D, Bone N, Bruzek LM, Narayanan VL, Adjei AA, Kay NE, Tefferi A, Karp JE, Sausville EA, Kaufmann SH (2003) Involvement of reactive oxygen species in adaphostin-induced cytotoxicity in human leukemia cells. Blood 102(13):4512–4519

    Article  PubMed  CAS  Google Scholar 

  8. Verrax J, Cadrobbi J, Delvaux M, Jamison JM, Gilloteaux J, Summers JL, Taper HS, Buc CP (2003) The association of vitamins C and K3 kills cancer cells mainly by autoschizis, a novel form of cell death. Basis for their potential use as coadjuvants in anticancer therapy. Eur J Med Chem 38(5):451–457

    Article  PubMed  CAS  Google Scholar 

  9. Verrax J, Delvaux M, Beghein N, Taper H, Gallez B, Buc CP (2005) Enhancement of quinone redox cycling by ascorbate induces a caspase-3 independent cell death in human leukaemia cells. An in vitro comparative study. Free Radic Res 39(6):649–657

    Article  PubMed  CAS  Google Scholar 

  10. Verrax J, Stockis J, Tison A, Taper HS, Calderon PB (2006) Oxidative stress by ascorbate/menadione association kills K562 human chronic myelogenous leukaemia cells and inhibits its tumour growth in nude mice. Biochem Pharmacol 72(6):671–680

    Article  PubMed  CAS  Google Scholar 

  11. Verrax J, Vanbever S, Stockis J, Taper H, Buc Calderon P (2007) Role of glycolysis inhibition and poly(ADP-ribose) polymerase activation in necrotic-like cell death caused by ascorbate/menadione-induced oxidative stress in K562 human chronic myelogenous leukemic cells. Int J Cancer 120(6):1192–1197

    Article  PubMed  CAS  Google Scholar 

  12. Dejeans N, Tajeddine N, Beck R, Verrax J, Taper H, Gailly P, Calderon PB (2010) Endoplasmic reticulum calcium release potentiates the ER stress and cell death caused by an oxidative stress in MCF-7 cells. Biochem Pharmacol 79(9):1221–1230

    Article  PubMed  CAS  Google Scholar 

  13. Beck R, Verrax J, Gonze T, Zappone M, Pedrosa RC, Taper H, Feron O, Calderon PB (2009) Hsp90 cleavage by an oxidative stress leads to its client proteins degradation and cancer cell death. Biochem Pharmacol 77(3):375–383

    Article  PubMed  CAS  Google Scholar 

  14. Verrax J, Pedrosa RC, Beck R, Dejeans N, Taper H, Calderon PB (2009) In situ modulation of oxidative stress: a novel and efficient strategy to kill cancer cells. Curr Med Chem 16(15):1821–1830

    Article  PubMed  CAS  Google Scholar 

  15. Daley GQ, Van Etten RA, Baltimore D (1990) Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247(4944):824–830

    Article  PubMed  CAS  Google Scholar 

  16. Elefanty AG, Hariharan IK, Cory S (1990) bcr-abl, the hallmark of chronic myeloid leukaemia in man, induces multiple haemopoietic neoplasms in mice. EMBO J 9(4):1069–1078

    PubMed  CAS  Google Scholar 

  17. Heisterkamp N, Jenster G, ten HJ, Zovich D, Pattengale PK, Groffen J (1990) Acute leukaemia in bcr/abl transgenic mice. Nature 344(6263):251–253

    Article  PubMed  CAS  Google Scholar 

  18. Kelliher MA, McLaughlin J, Witte ON, Rosenberg N (1990) Induction of a chronic myelogenous leukemia-like syndrome in mice with v-abl and BCR/ABL. Proc Natl Acad Sci U S A 87(17):6649–6653

    Article  PubMed  CAS  Google Scholar 

  19. Lugo TG, Pendergast AM, Muller AJ, Witte ON (1990) Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 247(4946):1079–1082

    Article  PubMed  CAS  Google Scholar 

  20. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, Zimmermann J, Lydon NB (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2(5):561–566

    Article  PubMed  CAS  Google Scholar 

  21. Jiang X, Saw KM, Eaves A, Eaves C (2007) Instability of BCR-ABL gene in primary and cultured chronic myeloid leukemia stem cells. J Natl Cancer Inst 99(9):680–693

    Article  PubMed  CAS  Google Scholar 

  22. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J, Sawyers CL (2002) Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2(2):117–125

    Article  PubMed  CAS  Google Scholar 

  23. An WG, Schulte TW, Neckers LM (2000) The heat shock protein 90 antagonist geldanamycin alters chaperone association with p210bcr-abl and v-src proteins before their degradation by the proteasome. Cell Growth Differ 11(7):355–360

    PubMed  CAS  Google Scholar 

  24. Baudhuin P, Beaufay H, Rahman-Li Y, Sellinger OZ, Wattiaux R, Jacques P, De DC (1964) Tissue fractionation studies. 17. Intracellular distribution of monoamine oxidase, aspartate aminotransferase, alanine aminotransferase, D-amino acid oxidase and catalase in rat-liver tissue. Biochem J 92(1):179–184

    PubMed  CAS  Google Scholar 

  25. Ilaria RL Jr, Van Etten RA (1995) The SH2 domain of P210BCR/ABL is not required for the transformation of hematopoietic factor-dependent cells. Blood 86(10):3897–3904

    PubMed  Google Scholar 

  26. Peters DG, Hoover RR, Gerlach MJ, Koh EY, Zhang H, Choe K, Kirschmeier P, Bishop WR, Daley GQ (2001) Activity of the farnesyl protein transferase inhibitor SCH66336 against BCR/ABL-induced murine leukemia and primary cells from patients with chronic myeloid leukemia. Blood 97(5):1404–1412

    Article  PubMed  CAS  Google Scholar 

  27. Toth KM, Clifford DP, Berger EM, White CW, Repine JE (1984) Intact human erythrocytes prevent hydrogen peroxide-mediated damage to isolated perfused rat lungs and cultured bovine pulmonary artery endothelial cells. J Clin Invest 74(1):292–295

    Article  PubMed  CAS  Google Scholar 

  28. Agar NS, Sadrzadeh SM, Hallaway PE, Eaton JW (1986) Erythrocyte catalase. A somatic oxidant defense? J Clin Invest 77(1):319–321

    Article  PubMed  CAS  Google Scholar 

  29. Winterbourn CC, Stern A (1987) Human red cells scavenge extracellular hydrogen peroxide and inhibit formation of hypochlorous acid and hydroxyl radical. J Clin Invest 80(5):1486–1491

    Article  PubMed  CAS  Google Scholar 

  30. Chen Q, Espey MG, Krishna MC, Mitchell JB, Corpe CP, Buettner GR, Shacter E, Levine M (2005) Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. Proc Natl Acad Sci U S A 102(38):13604–13609

    Article  PubMed  CAS  Google Scholar 

  31. Beck R, Verrax J, Dejeans N, Taper H, Calderon PB (2009) Menadione Reduction by Pharmacological Doses of Ascorbate Induces an Oxidative Stress That Kills Breast Cancer Cells. Int J Toxicol 28(1):33–42

    Article  PubMed  CAS  Google Scholar 

  32. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8(7):579–591

    Article  PubMed  CAS  Google Scholar 

  33. Wondrak GT (2009) Redox-directed cancer therapeutics: molecular mechanisms and opportunities. Antioxid Redox Signal 11(12):3013–3069

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Isabelle Blave and Véronique Allaeys for their excellent technical assistance. They also thank Pr. Roger Verbeeck for his careful reading and corrections of the manuscript. This work was supported by grants from the Belgian Fonds National de la Recherche Scientifique (3.4594.04) and by the Fonds Spéciaux de Recherche (FSR) Université Catholique de Louvain. Raphaël Beck is an FRIA recipient, Julien Verrax is an FNRS post-doctoral researcher, Nicolas Dejeans is an FNRS-Télévie post-doctoral researcher and Christophe Glorieux is an FNRS-Télévie recipient.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Verrax.

Additional information

Raphaël Beck is an FRIA recipient.

Nicolas Dejeans is an FNRS-Télévie Postdoctoral Researcher.

Christophe Glorieux is an FNRS-Télévie recipient.

Julien Verrax is an FNRS Postdoctoral Researcher.

Henryk Taper in memoriam (died 24/04/2009)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, R., Pedrosa, R.C., Dejeans, N. et al. Ascorbate/menadione-induced oxidative stress kills cancer cells that express normal or mutated forms of the oncogenic protein Bcr-Abl. An in vitro and in vivo mechanistic study. Invest New Drugs 29, 891–900 (2011). https://doi.org/10.1007/s10637-010-9441-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-010-9441-3

Keywords

Navigation