Skip to main content
Log in

Small molecule correctors of F508del-CFTR discovered by structure-based virtual screening

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Folding correctors of F508del-CFTR were discovered by in silico structure-based screening utilizing homology models of CFTR. The intracellular segment of CFTR was modeled and three cavities were identified at inter-domain interfaces: (1) Interface between the two Nucleotide Binding Domains (NBDs); (2) Interface between NBD1 and Intracellular Loop (ICL) 4, in the region of the F508 deletion; (3) multi-domain interface between NBD1:2:ICL1:2:4. We hypothesized that compounds binding at these interfaces may improve the stability of the protein, potentially affecting the folding yield or surface stability. In silico structure-based screening was performed at the putative binding-sites and a total of 496 candidate compounds from all three sites were tested in functional assays. A total of 15 compounds, representing diverse chemotypes, were identified as F508del folding correctors. This corresponds to a 3% hit rate, ~tenfold higher than hit rates obtained in corresponding high-throughput screening campaigns. The same binding sites also yielded potentiators and, most notably, compounds with a dual corrector-potentiator activity (dual-acting). Compounds harboring both activity types may prove to be better leads for the development of CF therapeutics than either pure correctors or pure potentiators. To the best of our knowledge this is the first report of structure-based discovery of CFTR modulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gadsby DC, Nairn AC (1999) Control of cftr channel gating by phosphorylation and nucleotide hydrolysis. Physiol Rev 79(1 Suppl):S77–S107

    CAS  Google Scholar 

  2. Riordan JR (2008) Cftr function and prospects for therapy. Annu Rev Biochem 77:701–726

    Article  CAS  Google Scholar 

  3. Davis PB (2006) Cystic fibrosis since 1938. Am J Respir Crit Care Med 173(5):475–482

    Article  Google Scholar 

  4. Du K, Lukacs GL (2009) Cooperative assembly and misfolding of cftr domains in vivo. Mol Biol Cell 20(7):1903–1915

    Article  CAS  Google Scholar 

  5. Du K, Sharma M, Lukacs GL (2005) The deltaf508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of cftr. Nat Struct Mol Biol 12(1):17–25

    Article  CAS  Google Scholar 

  6. Thibodeau PH, Brautigam CA, Machius M, Thomas PJ (2005) Side chain and backbone contributions of phe508 to cftr folding. Nat Struct Mol Biol 12(1):10–16

    Article  CAS  Google Scholar 

  7. Conn PM, Ulloa-Aguirre A, Ito J, Janovick JA (2007) G protein-coupled receptor trafficking in health and disease: lessons learned to prepare for therapeutic mutant rescue in vivo. Pharmacol Rev 59(3):225–250

    Article  CAS  Google Scholar 

  8. Pedemonte N, Sonawane ND, Taddei A, Hu J, Zegarra-Moran O, Suen YF, Robins LI, Dicus CW, Willenbring D, Nantz MH, Kurth MJ, Galietta LJ, Verkman AS (2005) Phenylglycine and sulfonamide correctors of defective delta f508 and g551d cystic fibrosis transmembrane conductance regulator chloride-channel gating. Mol Pharmacol 67(5):1797–1807. doi:10.1124/mol.105.010959

    Article  CAS  Google Scholar 

  9. Becq F (2006) On the discovery and development of cftr chloride channel activators. Curr Pharm Des 12(4):471–484

    Article  CAS  Google Scholar 

  10. Verkman AS, Lukacs GL, Galietta LJ (2006) Cftr chloride channel drug discovery–inhibitors as antidiarrheals and activators for therapy of cystic fibrosis. Curr Pharm Des 12(18):2235–2247

    Article  CAS  Google Scholar 

  11. Springsteel MF, Galietta LJ, Ma T, By K, Berger GO, Yang H, Dicus CW, Choung W, Quan C, Shelat AA, Guy RK, Verkman AS, Kurth MJ, Nantz MH (2003) Benzoflavone activators of the cystic fibrosis transmembrane conductance regulator: towards a pharmacophore model for the nucleotide-binding domain. Bioorg Med Chem 11(18):4113–4120

    Article  CAS  Google Scholar 

  12. Galietta LJ, Springsteel MF, Eda M, Niedzinski EJ, By K, Haddadin MJ, Kurth MJ, Nantz MH, Verkman AS (2001) Novel cftr chloride channel activators identified by screening of combinatorial libraries based on flavone and benzoquinolizinium lead compounds. J Biol Chem 276(23):19723–19728

    Article  CAS  Google Scholar 

  13. Yang H, Shelat AA, Guy RK, Gopinath VS, Ma T, Du K, Lukacs GL, Taddei A, Folli C, Pedemonte N, Galietta LJ, Verkman AS (2003) Nanomolar affinity small molecule correctors of defective delta f508-cftr chloride channel gating. J Biol Chem 278(37):35079–35085

    Article  CAS  Google Scholar 

  14. Chappe V, Mettey Y, Vierfond JM, Hanrahan JW, Gola M, Verrier B, Becq F (1998) Structural basis for specificity and potency of xanthine derivatives as activators of the cftr chloride channel. Br J Pharmacol 123(4):683–693

    Article  CAS  Google Scholar 

  15. Ma T, Vetrivel L, Yang H, Pedemonte N, Zegarra-Moran O, Galietta LJ, Verkman AS (2002) High-affinity activators of cystic fibrosis transmembrane conductance regulator (cftr) chloride conductance identified by high-throughput screening. J Biol Chem 277(40):37235–37241

    Article  CAS  Google Scholar 

  16. Hwang TC, Wang F, Yang IC, Reenstra WW (1997) Genistein potentiates wild-type and delta f508-cftr channel activity. Am J Physiol 273(3 Pt 1):C988–C998

    CAS  Google Scholar 

  17. Brown CR, Hong-Brown LQ, Biwersi J, Verkman AS, Welch WJ (1996) Chemical chaperones correct the mutant phenotype of the delta f508 cystic fibrosis transmembrane conductance regulator protein. Cell Stress Chaperones 1(2):117–125

    Article  CAS  Google Scholar 

  18. Haws CM, Nepomuceno IB, Krouse ME, Wakelee H, Law T, Xia Y, Nguyen H, Wine JJ (1996) Delta f508-cftr channels: kinetics, activation by forskolin, and potentiation by xanthines. Am J Physiol 270(5 Pt 1):C1544–C1555

    CAS  Google Scholar 

  19. Van Goor F, Straley KS, Cao D, Gonzalez J, Hadida S, Hazlewood A, Joubran J, Knapp T, Makings LR, Miller M, Neuberger T, Olson E, Panchenko V, Rader J, Singh A, Stack JH, Tung R, Grootenhuis PD, Negulescu P (2006) Rescue of deltaf508-cftr trafficking and gating in human cystic fibrosis airway primary cultures by small molecules. Am J Physiol Lung Cell Mol Physiol 290(6):L1117–L1130

    Article  Google Scholar 

  20. Wang Y, Bartlett MC, Loo TW, Clarke DM (2006) Specific rescue of cystic fibrosis transmembrane conductance regulator processing mutants using pharmacological chaperones. Mol Pharmacol 70(1):297–302

    CAS  Google Scholar 

  21. Wellhauser L, Chiaw PK, Pasyk S, Li C, Ramjeesingh M, Bear CE (2009) A small-molecule modulator interacts directly with deltaphe508-cftr to modify its ATPase activity and conformational stability. Mol Pharmacol 75(6):1430–1438

    Article  CAS  Google Scholar 

  22. Pedemonte N, Lukacs GL, Du K, Caci E, Zegarra-Moran O, Galietta LJ, Verkman AS (2005) Small-molecule correctors of defective deltaf508-cftr cellular processing identified by high-throughput screening. J Clin Invest 115(9):2564–2571

    Article  CAS  Google Scholar 

  23. Carlile GW, Robert R, Zhang D, Teske KA, Luo Y, Hanrahan JW, Thomas DY (2007) Correctors of protein trafficking defects identified by a novel high-throughput screening assay. Chembiochem 8(9):1012–1020

    Article  CAS  Google Scholar 

  24. Dormer RL, Harris CM, Clark Z, Pereira MM, Doull IJ, Norez C, Becq F, McPherson MA (2005) Sildenafil (viagra) corrects deltaf508-cftr location in nasal epithelial cells from patients with cystic fibrosis. Thorax 60(1):55–59

    Article  CAS  Google Scholar 

  25. Robert R, Carlile GW, Pavel C, Liu N, Anjos SM, Liao J, Luo Y, Zhang D, Thomas DY, Hanrahan JW (2008) Structural analog of sildenafil identified as a novel corrector of the f508del-cftr trafficking defect. Mol Pharmacol 73(2):478–489

    Article  CAS  Google Scholar 

  26. Dawson RJ, Locher KP (2006) Structure of a bacterial multidrug abc transporter. Nature 443(7108):180–185

    Article  CAS  Google Scholar 

  27. Serohijos AW, Hegedus T, Aleksandrov AA, He L, Cui L, Dokholyan NV, Riordan JR (2008) Phenylalanine-508 mediates a cytoplasmic-membrane domain contact in the cftr 3d structure crucial to assembly and channel function. Proc Natl Acad Sci U S A 105(9):3256–3261

    Article  CAS  Google Scholar 

  28. Mornon JP, Lehn P, Callebaut I (2008) Atomic model of human cystic fibrosis transmembrane conductance regulator: membrane-spanning domains and coupling interfaces. Cell Mol Life Sci 65(16):2594–2612

    Article  CAS  Google Scholar 

  29. Moran O, Galietta LJ, Zegarra-Moran O (2005) Binding site of activators of the cystic fibrosis transmembrane conductance regulator in the nucleotide binding domains. Cell Mol Life Sci 62(4):446–460

    Article  CAS  Google Scholar 

  30. Huang SY, Bolser D, Liu HY, Hwang TC, Zou X (2009) Molecular modeling of the heterodimer of human cftr’s nucleotide-binding domains using a protein-protein docking approach. J Mol Graph Model 27(7):822–828

    Article  CAS  Google Scholar 

  31. Senderowitz H, Fischman S, Kalid O, Sela I, Shitrit A, Strajbl M, Marantz Y (2007) Modeling the three-dimensional structure of cftr. Pediatr Pulmonol 54

  32. Wang Y, Loo TW, Bartlett MC, Clarke DM (2007) Correctors promote maturation of cystic fibrosis transmembrane conductance regulator (cftr)-processing mutants by binding to the protein. J Biol Chem 282(46):33247–33251

    Article  CAS  Google Scholar 

  33. Mense M, Vergani P, White DM, Altberg G, Nairn AC, Gadsby DC (2006) In vivo phosphorylation of cftr promotes formation of a nucleotide-binding domain heterodimer. EMBO J 25(20):4728–4739

    Article  CAS  Google Scholar 

  34. Vergani P, Lockless SW, Nairn AC, Gadsby DC (2005) Cftr channel opening by atp-driven tight dimerization of its nucleotide-binding domains. Nature 433(7028):876–880

    Article  CAS  Google Scholar 

  35. He L, Aleksandrov AA, Serohijos AW, Hegedus T, Aleksandrov LA, Cui L, Dokholyan NV, Riordan JR (2008) Multiple membrane-cytoplasmic domain contacts in the cystic fibrosis transmembrane conductance regulator (cftr) mediate regulation of channel gating. J Biol Chem 283(39):26383–26390

    Article  CAS  Google Scholar 

  36. Sybyl. Tripos Inc (1699) Hanley Road, St. Louis, MO 63144

  37. Hadida RS, Hazelwood AR, Grootenhuis PDJ, Zhou J (2006) Modulators of atp-binding cassette transporters

  38. Sherman W, Day T, Jacobson MP, Friesner RA, Farid R (2006) Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 49(2):534–553

    Article  CAS  Google Scholar 

  39. Linsdell P (2005) Location of a common inhibitor binding site in the cytoplasmic vestibule of the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Biol Chem 280(10):8945–8950. doi:10.1074/jbc.M414354200

    Article  CAS  Google Scholar 

  40. Linsdell P (2006) Mechanism of chloride permeation in the cystic fibrosis transmembrane conductance regulator chloride channel. Exp Physiol 91(1):123–129. doi:10.1113/expphysiol.2005.031757

    Article  CAS  Google Scholar 

  41. Smith SS, Liu X, Zhang ZR, Sun F, Kriewall TE, McCarty NA, Dawson DC (2001) Cftr: covalent and noncovalent modification suggests a role for fixed charges in anion conduction. J Gen Physiol 118(4):407–431

    Article  CAS  Google Scholar 

  42. Halgren TA (2009) Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model 49(2):377–389

    Article  CAS  Google Scholar 

  43. Singh OV, Pollard HB, Zeitlin PL (2008) Chemical rescue of deltaf508-cftr mimics genetic repair in cystic fibrosis bronchial epithelial cells. Mol Cell Proteomics 7(6):1099–1110

    Article  CAS  Google Scholar 

  44. Norez C, Antigny F, Becq F, Vandebrouck C (2006) Maintaining low ca2+ level in the endoplasmic reticulum restores abnormal endogenous f508del-cftr trafficking in airway epithelial cells. Traffic 7(5):562–573

    Article  CAS  Google Scholar 

  45. Gentzsch M, Chang XB, Cui L, Wu Y, Ozols VV, Choudhury A, Pagano RE, Riordan JR (2004) Endocytic trafficking routes of wild type and deltaf508 cystic fibrosis transmembrane conductance regulator. Mol Biol Cell 15(6):2684–2696

    Article  CAS  Google Scholar 

  46. Galietta LJV, Moran O (2004) Identification of cftr activators and inhibitors: chance or design? Curr Opin Pharmacol 4(5):497–503

    Article  CAS  Google Scholar 

  47. Lewis HA, Zhao X, Wang C, Sauder JM, Rooney I, Noland BW, Lorimer D, Kearins MC, Conners K, Condon B, Maloney PC, Guggino WB, Hunt JF, Emtage S (2005) Impact of the deltaf508 mutation in first nucleotide-binding domain of human cystic fibrosis transmembrane conductance regulator on domain folding and structure. J Biol Chem 280(2):1346–1353

    Article  CAS  Google Scholar 

  48. Schrodinger, llc, portland or. Schrodinger, LLC, Portland OR

  49. Zaitseva J, Jenewein S, Oswald C, Jumpertz T, Holland IB, Schmitt L (2005) A molecular understanding of the catalytic cycle of the nucleotide-binding domain of the abc transporter hlyb. Biochem Soc Trans 33(Pt 5):990–995

    CAS  Google Scholar 

  50. Shacham S, Marantz Y, Bar-Haim S, Kalid O, Warshaviak D, Avisar N, Inbal B, Heifetz A, Fichman M, Topf M, Naor Z, Noiman S, Becker OM (2004) Predict modeling and in-silico screening for g-protein coupled receptors. Proteins 57(1):51–86

    Article  CAS  Google Scholar 

  51. Hanekop N, Zaitseva J, Jenewein S, Holland IB, Schmitt L (2006) Molecular insights into the mechanism of atp-hydrolysis by the nbd of the abc-transporter hlyb. FEBS Lett 580(4):1036–1041

    Article  CAS  Google Scholar 

  52. Koellner G, Kryger G, Millard CB, Silman I, Sussman JL, Steiner T (2000) Active-site gorge and buried water molecules in crystal structures of acetylcholinesterase from torpedo californica. J Mol Biol 296(2):713–735

    Article  CAS  Google Scholar 

  53. Jones G, Willett P, Glen RC (1995) Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J Mol Biol 245(1):43–53

    Article  CAS  Google Scholar 

  54. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267(3):727–748

    Article  CAS  Google Scholar 

  55. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749

    Article  CAS  Google Scholar 

  56. Hirth BH, Qiao S, Cuff LM, Cochran BM, Pregel MJ, Gregory JS, Sneddon SF, Kane JL Jr (2005) Discovery of 1, 2, 3, 4-tetrahydroisoquinoline-3-carboxylic acid diamides that increase cftr mediated chloride transport. Bioorg Med Chem Lett 15(8):2087–2091

    Article  CAS  Google Scholar 

  57. Bar-Haim S, Aharon A, Ben-Moshe T, Marantz Y, Senderowitz H (2009) Selex-cs: a new consensus scoring algorithm for hit discovery and lead optimization. J Chem Inf Model 49(3):623–633

    Article  CAS  Google Scholar 

  58. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23(1–3):3–25

    Article  CAS  Google Scholar 

  59. Cerius2 (2008) 4.11 edn. Accelrys, Inc., San Diego

  60. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45(12):2615–2623

    Article  CAS  Google Scholar 

  61. Sela I, Golan G, Strajbl M, Rivenzon-Segal D, Bar-Haim S, Bloch I, Inbal B, Shitrit A, Ben-Zeev E, Fichman M, Markus Y, Marantz Y, Senderowitz H, Kalid O () G protein coupled receptors -in silico drug discovery and design. Curr Top Med Chem 10(6):638-656

  62. Discovery studio (2008) Version 2.1 edn. Accelrys, Inc, San Diego

  63. Wang R, Wang S (2001) How does consensus scoring work for virtual library screening? An idealized computer experiment. J Chem Inf Comput Sci 41(5):1422–1426

    CAS  Google Scholar 

  64. Filimonov D, Poroikov V, Borodina Y, Gloriozova T (1999) Chemical similarity assessment through multilevel neighborhoods of atoms: definition and comparison with the other descriptors. J Chem Inf Comput Sci 39(4):666–670

    CAS  Google Scholar 

  65. Zegarra-Moran O, Romio L, Folli C, Caci E, Becq F, Vierfond JM, Mettey Y, Cabrini G, Fanen P, Galietta LJ (2002) Correction of g551d-cftr transport defect in epithelial monolayers by genistein but not by cpx or mpb-07. Br J Pharmacol 137(4):504–512

    Article  CAS  Google Scholar 

  66. Gentzsch M, Choudhury A, Chang XB, Pagano RE, Riordan JR (2007) Misassembled mutant deltaf508 cftr in the distal secretory pathway alters cellular lipid trafficking. J Cell Sci 120(Pt 3):447–455

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by Cystic Fibrosis Foundation Therapeutics. The authors would like to thank Luis Galietta and ChanTest, Inc. for their contribution to the in vitro screening presented in this paper. Special thanks to Melissa Ashlock, Julie Forman-Kay, David Gadsby, and Kevin Foskett for insightful discussions and advice. Excellent technical assistance was provided by Jan Harrington, Linda Coulson, Katelyn Cassidy and Linda Millen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ori Kalid.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 175 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalid, O., Mense, M., Fischman, S. et al. Small molecule correctors of F508del-CFTR discovered by structure-based virtual screening. J Comput Aided Mol Des 24, 971–991 (2010). https://doi.org/10.1007/s10822-010-9390-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-010-9390-0

Keywords

Navigation