Skip to main content
Log in

Resveratrol-induced mitochondrial dysfunction and apoptosis are associated with Ca2+ and mCICR-mediated MPT activation in HepG2 cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Resveratrol, a natural polyphenolic antioxidant, has been reported to possess the cancer chemopreventive potential in wide range by means of triggering tumor cells apoptosis through various pathways. It induced apoptosis through the activation of the mitochondrial pathway in some kinds of cells. In the present reports, we showed that resveratrol-induced HepG2 cell apoptosis and mitochondrial dysfunction was dependent on the induction of the mitochondrial permeability transition (MPT), because resveratrol caused the collapse of the mitochondrial membrane potential (ΔΨm) with the concomitant release of cytochrome c (Cyt.c). In addition, resveratrol induced a rapid and sustained elevation of intracellular [Ca2+], which compromised the mitochondrial ΔΨm and triggered the process of HepG2 cell apoptosis. In permeabilized HepG2 cells, we further demonstrated that the effect of the resveratrol was indeed synergistic with that of Ca2+ and Ca2+ is necessary for resveratrol-induced MPT opening. Calcium-induced calcium release from mitochondria (mCICR) played a key role in mitochondrial dysfunction and cell apoptosis: (1) mCICR inhibitor, ruthenium red (RR), prevent MPT opening and Cyt.c release; and (2) RR attenuated resveratrol-induced HepG2 cell apoptotic death. Furthermore, resveratrol promotes MPT opening by lowering Ca2+-threshold. These data suggest modifying mCICR and Ca2+ threshold to modulate MPT opening may be a potential target to control cell apoptosis induced by resveratrol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275(5297):218–220

    Article  PubMed  CAS  Google Scholar 

  2. Aziz MH, Kumar R, Ahmad N (2003) Cancer chemoprevention by resveratrol: in vivo and in vivo studies and the underlying mechanisms. Int J Oncol 23(1):17–28

    PubMed  CAS  Google Scholar 

  3. Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y (2004) Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res 24(5A):2783–2840

    PubMed  CAS  Google Scholar 

  4. Park JW, Choi YJ, Suh SI, Baek WK, Suh MH, Jin IN, Min DS, Woo JH, Chang JS, Passaniti A, Lee YH, Kwon TK (2001) Bcl-2 overexpression attenuates resveratrol-induced apoptosis in U937 cells by inhibition of caspase-3 activity. Carcinogenesis 22(10):1633–1639

    Article  PubMed  CAS  Google Scholar 

  5. Clement MV, Hirpara JL, Chawdhury SH, Pervaiz S (1998) Chemopreventive agent resveratrol, a natural product derived from grapes, triggers CD95 signaling-dependent apoptosis in human tumor cells. Blood 92(3):996–1002

    PubMed  CAS  Google Scholar 

  6. Joe AK, Liu H, Suzui M, Vural ME, Xiao D, Weinstein IB (2002) Resveratrol induces growth inhibition, S-phase arrest, apoptosis, and changes in biomarker expression in several human cancer cell lines. Clin Carcer Res 8(3):893–903

    CAS  Google Scholar 

  7. Tinhofer I, Bernhard D, Senfter M, Anether G, Loeffler M, Kroemer G, Kofler R, Csordas A, Greil R (2001) Resveratrol, a tumor-suppressive compound from grapes, induces apoptosis via a novel mitochondrial pathway controlled by Bcl-2. FASEB J 15(9):1613–1615

    PubMed  CAS  Google Scholar 

  8. Mohan J, Gandhi AA, Bhavya BC, Rashmi R, Karunagaran D, Indu R, Santhoshkumar TR (2006) Caspase-2 triggers Bax-Bak-dependent and -independent cell death in colon cancer cells treated with resveratrol. J Biol Chem 281(26):17599–17611

    Article  PubMed  CAS  Google Scholar 

  9. Kim JS, He L, Lemasters JJ (2003) Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun 304(3):463–470

    Article  PubMed  CAS  Google Scholar 

  10. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305(5684):626–629

    Article  PubMed  CAS  Google Scholar 

  11. Gunter TE, Buntinas L, Sparagna G, Eliseev R, Gunter K (2000) Mitochondrial calcium transport: mechanisms and functions. Cell Calcium 28(5–6):285–296

    Article  PubMed  CAS  Google Scholar 

  12. Armstrong JS (2006) Mitochondrial membrane permeabilization: the sine qua non for cell death. Bioessays 28(3):253–260

    Article  PubMed  CAS  Google Scholar 

  13. Halestrap AP, Brennerb C (2003) The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death. Curr Med Chem 10(16):1507–1525

    Article  PubMed  CAS  Google Scholar 

  14. Huang X, Zhai D, Huang Y (2001) Dependence of permeability transition pore opening and cytochrome C release from mitochondria on mitochondria energetic status. Mol Cell Biochem 224(1–2):1–7

    Article  PubMed  CAS  Google Scholar 

  15. Smaili SS, Hsu YT, Youle RJ, Russell JT (2000) Mitochondria in Ca2+ signaling and apoptosis. J Bioenerg Biomembr 32(1):35–46

    Article  PubMed  CAS  Google Scholar 

  16. Simpson PB, Russell JT (1998) Role of mitochondrial Ca2+ regulation in neuronal and glial cell signaling. Brain Res Brain Res Rev 26(1):72–81

    Article  PubMed  CAS  Google Scholar 

  17. Ichas F, Jouaville LS, Mazat JP (1997) Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell 89(7):1145–1153

    Article  PubMed  CAS  Google Scholar 

  18. Ichas F, Mazat JP (1998) From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low-to high-conductance state. Biochem Biophys Acta 1366(1–2):33–50

    PubMed  CAS  Google Scholar 

  19. Huang X, Zhai D, Huang Y (2000) Study on the relationship between calcium-induced calcium release from mitochondria and PTP opening. Mol Cell Biochem 213(1–2):29–35

    Article  PubMed  CAS  Google Scholar 

  20. Frambach I, Rossler W, Winkler M, Schurmann FW (2004) F-actin at identified synapses in the mushroom body neuropil of the insect brain. J Comp Neurol 475(3):303–314

    Article  PubMed  CAS  Google Scholar 

  21. Rose P, Whiteman M, Huang SH, Halliwell B, Ong CN (2003) β-Phenylethyl isothiocyanate-mediated apoptosis in hepatoma HepG2 cells. Cell Mol Life Sci 60(7):1489–1503

    Article  PubMed  CAS  Google Scholar 

  22. Oh KW, Qian T, Brenner DA, Lemasters JJ (2003) Salicylate enhances necrosis and apoptosis mediated by the mitochondrial permeability transition. Toxicol Sci 73(1):44–52

    Article  PubMed  CAS  Google Scholar 

  23. Bradham CA, Qian T, Streetz K, Trautwein C, Brenner DA, Lemasters JJ (1998) The mitochondrial permeability transition is required for tumor necrosis factor alpha-mediated apoptosis and cytochrome c release. Mol Cell Biol 18(11):6353–6364

    PubMed  CAS  Google Scholar 

  24. Deng X, Yin F, Lu X, Cai B, Yin W (2006) The apoptotic effect of brucine from the seed of Strychnos nux-vomica on human hepatoma cells is mediated via Bcl-2 and Ca2+ involved mitochondrial pathway. Toxicol Sci 91(1):59–69

    Article  PubMed  CAS  Google Scholar 

  25. Szalai G, Krishnamurthy R, Hajnoczky G (1999) Apoptosis driven by IP3-linked mitochondrial calcium signals. EMBO J 18(22):6349–6361

    Article  PubMed  CAS  Google Scholar 

  26. Morita K, Kitayama T, Kitayama S, Dohi T (2006) Cyclic ADP-ribose requires FK506-binding protein to regulate intracellular Ca2+ dynamics and catecholamine release in acetylcholine-stimulated bovine adrenal chromaffin cells. J Pharmacol Sci 101(1):40–51

    Article  PubMed  CAS  Google Scholar 

  27. Mironov SL, Ivannikov MV, Johansson M (2005) [Ca2+]i signaling between mitochondria and endoplasmic reticulum in neurons is regulated by microtubules. From mitochondrial permeability transition pore to Ca2+-induced Ca2+ release. J Biol Chem 280(1):715–721

    PubMed  CAS  Google Scholar 

  28. Campos CB, Paim BA, Cosso RG, Castilho RF, Rottenberg H, Vercesi AE (2006) Method for monitoring of mitochondrial cytochrome c release during cell death: immunodetection of cytochrome c by flow cytometry after selective permeabilization of the plasma membrane. Cytometry A 69(6):515–523

    PubMed  Google Scholar 

  29. Mattson MP, Chan SL (2003) Calcium orchestrates apoptosis. Nat Cell Biol 5(12):1041–1043

    Article  PubMed  CAS  Google Scholar 

  30. Hoyt KR, Sharma TA, Reyndds I (1997) Trifluoperazine and dibucaine-induced inhibition of glutamate-induced mitochondria depolarization in rat cultured forebrain neurons. Br J Pharmacol 122(5):803–808

    Article  PubMed  CAS  Google Scholar 

  31. Dorrie J, Gerauer H, Wachter Y, Zunino SJ (2001) Resveratrol induces extensive apoptosis by depolarizing mitochondrial membranes and activating caspase-9 in acute lymphoblastic leukemia cells. Cancer Res 61(12):4731–4739

    PubMed  CAS  Google Scholar 

  32. Whiteman M, Rose P, Siau JL, Cheung NS, Tan GS, Halliwell B, Armstrong JS (2005) Hypochlorous acid-mediated mitochondrial dysfunction and apoptosis in human hepatoma HepG2 and human fetal liver cells: role of mitochondrial permeability transition. Free Radic Biol Med 38(12):1571–1584

    Article  PubMed  CAS  Google Scholar 

  33. Jackson JG, Thayer SA (2006) Mitochondrial modulation of Ca2+-induced Ca2+-release in rat sensory neurons. J Neurophysiol 96(3):1093–1104

    Article  PubMed  CAS  Google Scholar 

  34. Dahlem YA, Wolf G, Siemen D, Horn TF (2006) Combined modulation of the mitochondrial ATP-dependent potassium channel and the permeability transition pore causes prolongation of the biphasic calcium dynamics. Cell Calcium 39(5):387–400

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the Grant No. 30300455 of China Natural Science Foundation. The authors express thanks for the assistance from associate professor Ande Ma and Lianbo Chen for the excellent FACS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemei Tian.

Additional information

Xuemei Tian—Foundation item: Chinese National Natural Science Foundation (No.30300455).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, X., Tian, X., Huang, X. et al. Resveratrol-induced mitochondrial dysfunction and apoptosis are associated with Ca2+ and mCICR-mediated MPT activation in HepG2 cells. Mol Cell Biochem 302, 99–109 (2007). https://doi.org/10.1007/s11010-007-9431-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9431-8

Keywords

Navigation