Skip to main content
Log in

Expression of ion channels of the TRP family in articular chondrocytes from osteoarthritic patients: changes between native and in vitro propagated chondrocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The maintenance of a differentiated chondrocyte phenotype is influenced by several factors of which signal transduction of extracellular stimuli through the cell membrane is of major interest. One important group of membrane-bound proteins which are involved in transmembrane signal transduction are ion channels. Human articular chondrocytes were obtained from osteoarthritic femoral condyles. Cells were released from the surrounding matrix and cultivated under standard conditions. We investigated gene expression of 12 members of the TRP ion channel family of freshly prepared (passage 0; P0) and in vitro propagated human articular chondrocytes (passage 2; P2) using conventional and real-time PCR (RT-PCR). In addition, the protein appearance of four TRP channels was demonstrated by immunofluorescence and western blotting. Chondrocyte differentiation was monitored by quantification of collagen type-II, type-I, and aggrecan gene expression. By conventional PCR, 8 channels could be detected, of which some displayed a heterogeneous PCR pattern. RT-PCR quantification revealed that TRPC1 was expressed on the same level in P0 and P2 chondrocytes while gene expression of TRPC3 and TRPC6 was elevated in passage 2 cells. TRPM5, TRPM7, and TRPV1 displayed an enhanced gene expression in freshly isolated chondrocytes. Immunofluorescence signal intensity of all four investigated TRP proteins was consistent with the corresponding gene expression data. In the present study, a correlation between the appearance of some members of the TRP ion channel family and the state of de-differentiation of osteoarthritic articular chondrocytes was shown. A possible direct involvement in the process of chondrocyte de-differentiation has to be investigated in further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang KG, Saris DB, Geuze RE et al (2006) Altered in vitro chondrogenic properties of chondrocytes harvested from unaffected cartilage in osteoarthritic joints. Osteoarthr Cartil 14(6):561–570. doi:10.1016/j.joca.2005.12.002

    Article  PubMed  CAS  Google Scholar 

  2. Mobasheri A, Mobasheri R, Francis MJ et al (1998) Ion transporters in chondrocytes: membrane transporters involved in intracellular ion homeostasis and the regulation of cell volume, free [Ca2+] and pH. Histol Histopathol 13(3):893–910

    PubMed  CAS  Google Scholar 

  3. Lee JH, Kisiday J, Grodzinsky AJ (2003) Tissue-engineered versus native cartilage: linkage between cellular mechanotransduction and biomechanical properties. Novartis Found Symp 249:52–64. doi:10.1002/0470867973.ch5

    Article  PubMed  CAS  Google Scholar 

  4. Schmidt-Rohlfing B, Schneider U, Goost H et al (2002) Mechanically induced electrical potentials of articular cartilage. J Biomech 35:475–482. doi:10.1016/S0021-9290(01)00232-9

    Article  PubMed  Google Scholar 

  5. Frank EH, Grodzinsky AJ (1987) Cartilage electromechanics—I. Electrokinetic transduction and the effects of electrolyte pH and ionic strength. J Biomech 20:615–627. doi:10.1016/0021-9290(87)90282-X

    Article  PubMed  CAS  Google Scholar 

  6. Wilkins RJ, Browning JA, Urban JPG (2000) Chondrocyte regulation by mechanical load. Biorheology 37:67–74

    PubMed  CAS  Google Scholar 

  7. Woodard GE, Sage SO, Rosado JA (2007) Transient receptor potential channels and intracellular signaling. Int Rev Cytol 256:35–67. doi:10.1016/S0074-7696(07)56002-X

    Article  PubMed  CAS  Google Scholar 

  8. Zitt C, Halaszovich CR, Luckhoff A (2002) The TRP family of cation channels: probing and advancing the concepts on receptor-activated calcium entry. Prog Neurobiol 66:243–264. doi:10.1016/S0301-0082(02)00002-3

    Article  PubMed  CAS  Google Scholar 

  9. Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–647. doi:10.1146/annurev.physiol.68.040204.100431

    Article  PubMed  CAS  Google Scholar 

  10. Heiner I, Eisfeld J, Halaszovich CR et al (2003) Expression profile of the transient receptor potential (TRP) family in neutrophil granulocytes: evidence for currents through long TRP channel 2 induced by ADP-ribose and NAD. Biochem J 371:1045–1053. doi:10.1042/BJ20021975

    Article  PubMed  CAS  Google Scholar 

  11. Nadler MJ, Hermosura MC, Inabe K et al (1999) LTRPC7 is a Mg ATP-regulated divalent cation channel required for cell viability. Nature 411(6837):590–595. doi:10.1038/35079092

    Article  Google Scholar 

  12. Ikenoue T, Trindade MC, Lee MS et al (2003) Mechanoregulation of human articular chondrocyte aggrecan and type II collagen expression by intermittent hydrostatic pressure in vitro. J Orthop Res 21(10):110–116. doi:10.1016/S0736-0266(02)00091-8

    Article  PubMed  CAS  Google Scholar 

  13. Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524. doi:10.1038/nature02196

    Article  PubMed  CAS  Google Scholar 

  14. Clapham DE, Montell C, Schultz G et al (2003) International Union of Pharmacology. XLIII. Compendium of voltage-gated ion channels: transient receptor potential channels. Pharmacol Rev 55:591–596. doi:10.1124/pr.55.4.6

    Article  PubMed  Google Scholar 

  15. Zhu X, Jiang M, Peyton M et al (1996) TRP, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 85:661–671. doi:10.1016/S0092-8674(00)81233-7

    Article  PubMed  CAS  Google Scholar 

  16. Putney JW, McKay RR Jr (1999) Capacitative calcium entry channels. Bioessays 21:38–46. doi: 10.1002/(SICI)1521-1878(199901)21:1<38::AID-BIES5>3.0.CO;2-S

    Google Scholar 

  17. Liedtke W (2007) Role of TRPV ion channels in sensory transduction of osmotic stimuli in mammals. Exp Physiol 92(3):507–512. doi:10.1113/expphysiol.2006.035642

    Article  PubMed  CAS  Google Scholar 

  18. Kirsch T, Swoboda B, von der Mark K (1992) Ascorbate independent differentiation of human chondrocytes in vitro: simultaneous expression of types I and X collagen and matrix mineralization. Differentiation 52:89–100. doi:10.1111/j.1432-0436.1992.tb00503.x

    Article  PubMed  CAS  Google Scholar 

  19. Bonen DK, Schmid TM (1991) Elevated extracellular calcium concentrations induce type X collagen synthesis in chondrocyte cultures. J Cell Biol 115:1171–1178. doi:10.1083/jcb.115.4.1171

    Article  PubMed  CAS  Google Scholar 

  20. Koyano Y, Hejna M, Flechtenmacher J et al (1996) Collagen and proteoglycan production by bovine fetal and adult chondrocytes under low levels of calcium and zinc ions. Connect Tissue Res 34(3):213–225. doi:10.3109/03008209609000700

    Article  PubMed  CAS  Google Scholar 

  21. Guilak F, Zell RA, Erickson GR et al (1999) Mechanically induced calcium waves in articular chondrocytes are inhibited by gadolinium and amiloride. J Orthop Res 17(3):421–429. doi:10.1002/jor.1100170319

    Article  PubMed  CAS  Google Scholar 

  22. Boileau C, Martel-Pelletier J, Brunet J et al (2006) An a2d ligand of the voltage gated calcium channel, inhibits in vivo activation of the Erk1/2 pathway in osteoarthritic chondrocytes: a PKCa dependent effect. Ann Rheum Dis 65:573–580. doi:10.1136/ard.2005.041855

    Article  PubMed  CAS  Google Scholar 

  23. Zuscik MJ, Gunter TE, Puzas JE et al (1997) Characterization of voltage-sensitive calcium channels in growth plate chondrocytes. Biochem Biophys Res Commun 234:432–438. doi:10.1006/bbrc.1997.6661

    Article  PubMed  CAS  Google Scholar 

  24. Walker RG, Willingham AT, Zuker CS (2000) A Drosophila mechanosensory transduction channel. Science 287:2229–2234. doi:10.1126/science.287.5461.2229

    Article  PubMed  CAS  Google Scholar 

  25. Zhou XL, Batiza AF, Loukin SH et al (2003) The transient receptor potential channel on the yeast vacuole is mechanosensitive. Proc Natl Acad Sci USA 100:7105–7110. doi:10.1073/pnas.1230540100

    Article  PubMed  CAS  Google Scholar 

  26. Kahn-Kirby AH, Dantzker JL, Apicella AJ et al (2004) Specific polyunsaturated fatty acids drive TRPV-dependent sensory signaling in vivo. Cell 119:889–900. doi:10.1016/j.cell.2004.11.005

    Article  PubMed  CAS  Google Scholar 

  27. Suzuki M, Mizuno A, Kodaira K et al (2003) Impaired pressure sensation in mice lacking TRPV4. J Biol Chem 278:22664–22668. doi:10.1074/jbc.M302561200

    Article  PubMed  CAS  Google Scholar 

  28. Maroto R, Raso A, Wood TG et al (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7:179–185. doi:10.1038/ncb1218

    Article  PubMed  CAS  Google Scholar 

  29. Corey DP, Garcia-Anoveros J, Holt JR et al (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432:723–730. doi:10.1038/nature03066

    Article  PubMed  CAS  Google Scholar 

  30. Lin SY, Corey DP (2005) TRP channels in mechanosensation. Curr Opin Neurobiol 15:350–357. doi:10.1016/j.conb.2005.05.012

    Article  PubMed  CAS  Google Scholar 

  31. Wright M, Jobanputra P, Bavington C et al (1996) Effects of intermittent pressure-induced strain on the electrophysiology of cultured human chondrocytes: evidence for the presence of stretch-activated membrane ion channels. Clin Sci 90(1):61–71

    PubMed  CAS  Google Scholar 

  32. Chowdhury TT, Salter DM, Bader DL et al (2004) Integrin-mediated mechanotransduction processes in TGFbeta-stimulated monolayer-expanded chondrocytes. Biochem Biophys Res Commun 318(4):873–881. doi:10.1016/j.bbrc.2004.04.107

    Article  PubMed  CAS  Google Scholar 

  33. Chowdhury TT, Appleby RN, Salter DM et al (2006) Integrin-mediated mechanotransduction in IL-1 beta stimulated chondrocytes. Biomech Model Mechanobiol 5(2–3):192–201. doi:10.1007/s10237-006-0032-3

    Article  PubMed  CAS  Google Scholar 

  34. Woods A, Wang G, Beier F (2007) Regulation of chondrocyte differentiation by the actin cytoskeleton and adhesive interactions. J Cell Physiol 213(1):1–8. doi:10.1002/jcp.21110

    Article  PubMed  CAS  Google Scholar 

  35. Goessler UR, Bugert P, Bieback K et al (2005) Differential modulation of integrin expression in chondrocytes during expansion for tissue engineering. In Vivo 19(3):501–507

    PubMed  CAS  Google Scholar 

  36. Wu G, Lu ZH, Obukhov AG et al (2007) Induction of calcium influx through TRPC5 channels by cross-linking of GM1 ganglioside associated with α1β5 integrin initiates neurite outgrowth. J Neurosci 27(28):7447–7458. doi:10.1523/JNEUROSCI.4266-06.2007

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Schmidt-Rohlfing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavenis, K., Schumacher, C., Schneider, U. et al. Expression of ion channels of the TRP family in articular chondrocytes from osteoarthritic patients: changes between native and in vitro propagated chondrocytes. Mol Cell Biochem 321, 135–143 (2009). https://doi.org/10.1007/s11010-008-9927-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9927-x

Keywords

Navigation