Skip to main content
Log in

Calmodulin Binding to Peptides Derived from the i3 Loop of Muscarinic Receptors

  • Feature Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

This study was conducted to identify and characterize the structural requirements of a calmodulin-binding motif identified in the third intracellular (i3) loop of muscarinic acetylcholine receptors (M1–M5), a region important for G protein coupling.

Methods

GST fusion proteins and synthetic peptides derived from the hM1 i3 loop were tested for binding to CaM using a cross-linking gel shift assay and a dansyl-CaM fluorescence assay. Mutagenesis studies further characterized the structural requirements for the interaction and identified critical residues.

Results

28-Mer peptides from the C terminus of i3, representing the putative calmodulin domains of M1, M2, and M3, were found capable of interacting with CaM. In addition, smaller peptides defined a 5-amino-acid sequence essential for calmodulin binding. Studies performed with M1 peptides derived from GST fusion proteins, representing larger portions of the i3 C terminus, suggested the presence of a second adjacent CaM binding site. Mutagenesis studies identified two mutants that are unable to bind CaM: a point mutation, E360A, and a deletion mutant, Δ232–358.

Conclusion

Calmodulin can bind to an M1 region implicated in G protein coupling. This indicates an important role for CaM in the regulation of muscarinic signal transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CAm:

calmodulin

GPCR:

G-protein coupled receptor

hM1–3:

human muscarinic acetylcholine receptor, types 1–3

mAchR:

muscarinic acetylcholine receptor

mGluR:

metabotropic glutamate receptor

MOR:

μ opioid receptor

PKC:

protein kinase C

References

  1. C. J. Koppen Particlevan B. Kaiser (2003) ArticleTitleRegulation of muscarinic acetylcholine receptor signaling Pharmacol. Ther. 98 197–220 Occurrence Handle10.1016/S0163-7258(03)00032-9 Occurrence Handle12725869

    Article  PubMed  Google Scholar 

  2. A. I. Levey C. A. Kitt W. F. Simonds D. L. Price M. R. Brann (1991) ArticleTitleIdentification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies J. Neurosci. 11 3218–3226 Occurrence Handle1:CAS:528:DyaK3MXmsVymu7k%3D Occurrence Handle1941081

    CAS  PubMed  Google Scholar 

  3. C. C. Felder A. C. Porter T. L. Skillman L. Zhang F. P. Bymaster N. M. Nathanson S. E. Hamilton J. Gomeza J. Wess D. L. McKinzie (2001) ArticleTitleElucidating the role of muscarinic receptors in psychosis Life Sci. 68 2605–2613 Occurrence Handle10.1016/S0024-3205(01)01059-1 Occurrence Handle1:CAS:528:DC%2BD3MXjs1WksL4%3D Occurrence Handle11392633

    Article  CAS  PubMed  Google Scholar 

  4. F. Dorje A. I. Levey M. R. Brann (1991) ArticleTitleImmunological detection of muscarinic receptor subtype proteins (m1–m5) in rabbit peripheral tissues Mol. Pharmacol. 40 459–462 Occurrence Handle1:STN:280:By2D3MjmslQ%3D Occurrence Handle1921982

    CAS  PubMed  Google Scholar 

  5. S. E. Hamilton M. L. Schlador L. A. McKinnon R. S. Chmelar N. M. Nathanson (1998) ArticleTitleMolecular mechanisms for the regulation of the expression and function of muscarinic acetylcholine receptors J. Physiol. Paris 92 275–278 Occurrence Handle10.1016/S0928-4257(98)80032-6 Occurrence Handle1:CAS:528:DyaK1cXmsV2ms7w%3D Occurrence Handle9789822

    Article  CAS  PubMed  Google Scholar 

  6. S. E. Hamilton S. N. Hardouin S. G. Anagnostaras G. G. Murphy K. N. Richmond A. J. Silva E. O. Feigl N. M. Nathanson (2001) ArticleTitleAlteration of cardiovascular and neuronal function in m1 knockout mice Life Sci. 68 2489–2493 Occurrence Handle10.1016/S0024-3205(01)01043-8 Occurrence Handle1:CAS:528:DC%2BD3MXjs1Wksro%3D Occurrence Handle11392617

    Article  CAS  PubMed  Google Scholar 

  7. E. Bofill-Cardona O. Kudlacek Q. Yang H. Ahorn M. Friessmuth C. Nanoff (2000) ArticleTitleBinding of calmodulin to the D2-dopamine receptor reduces receptor signaling by arresting the G-protein activation switch J. Biol. Chem. 275 32672–32680 Occurrence Handle10.1074/jbc.M002780200 Occurrence Handle1:CAS:528:DC%2BD3cXnslOitLc%3D Occurrence Handle10926927

    Article  CAS  PubMed  Google Scholar 

  8. D. Wang W. Sadee J. M. Quillan (1999) ArticleTitleCalmodulin binding to G protein-coupling domain of opioid receptors J. Biol. Chem. 274 22081–22088 Occurrence Handle10.1074/jbc.274.31.22081 Occurrence Handle1:CAS:528:DyaK1MXltVymur0%3D Occurrence Handle10419536

    Article  CAS  PubMed  Google Scholar 

  9. R. Minakami N. Jinnai H. Sugiyama (1997) ArticleTitlePhosphorylation and calmodulin binding of the metabotropic glutamate receptor subtype 5 (mGluR5) are antagonistic in vitro J. Biol. Chem. 272 20291–20298 Occurrence Handle10.1074/jbc.272.32.20291 Occurrence Handle1:CAS:528:DyaK2sXltlGku7o%3D Occurrence Handle9242710

    Article  CAS  PubMed  Google Scholar 

  10. Y. Nakajima T. Yamamoto T. Nakayama S. Nakanishi (1999) ArticleTitleA relationship between protein kinase C phosphorylation and calmodulin binding to the metabotropic glutamate receptor subtype 7 J. Biol. Chem. 274 27573–27577 Occurrence Handle10.1074/jbc.274.39.27573 Occurrence Handle1:CAS:528:DyaK1MXmtlOks7k%3D Occurrence Handle10488094

    Article  CAS  PubMed  Google Scholar 

  11. J. H. Turner A. K. Gelasco J. R. Raymond (2004) ArticleTitleCalmodulin interacts with the third intracellular loop of the serotonin 5-hydroxytryptamine1A receptor at two distinct sites J. Biol. Chem. 279 17027–17037 Occurrence Handle10.1074/jbc.M313919200 Occurrence Handle1:CAS:528:DC%2BD2cXjt1Ggtro%3D Occurrence Handle14752100

    Article  CAS  PubMed  Google Scholar 

  12. J. M. Quillan W. Sadee (1996) ArticleTitleStructure-based search for peptide ligands that cross-react with melanocortin receptor Pharm. Res. 13 1624–1630 Occurrence Handle10.1023/A:1016424203457 Occurrence Handle1:CAS:528:DyaK28XnsVKrtrc%3D Occurrence Handle8956325

    Article  CAS  PubMed  Google Scholar 

  13. Y. Zhang D. Wang W. Sadee (2005) ArticleTitleCalmodulin interaction with peptides from G-protein coupled receptors measured with S-tag labeling Biochem. Biophys. Res. Commun. 333 390–395 Occurrence Handle10.1016/j.bbrc.2005.05.129 Occurrence Handle1:CAS:528:DC%2BD2MXlsVChtb0%3D Occurrence Handle15950946

    Article  CAS  PubMed  Google Scholar 

  14. J. V. Frangioni B. G. Neel (1993) ArticleTitleSolubilization and purification of enzymatically active glutathione-S-transferase (pGEX) fusion proteins Anal. Biochem. 210 179–187 Occurrence Handle10.1006/abio.1993.1170 Occurrence Handle1:CAS:528:DyaK3sXkt1equ7Y%3D Occurrence Handle8489015

    Article  CAS  PubMed  Google Scholar 

  15. R. L. Kincaid M. Vaughn V. A. Tkachuk J. James C. Osborne (1982) ArticleTitleCa2+-dependent interaction of 5-dimethylaminoaphthalene-1-sulfonyl-calmodulin with cyclic nucleotide phosphodiesterase, calcineurin, and troponin I J. Biol. Chem. 257 10638–10643 Occurrence Handle1:CAS:528:DyaL38XlsFyltb4%3D Occurrence Handle6286665

    CAS  PubMed  Google Scholar 

  16. C. G. Warr L. E. Kelly (1995) ArticleTitleIdentification and characterization of two distinct calmodulin-binding sites in the TrpI ion-channel protein of Drosophila melanogaster Biochem. J. 314 497–503

    Google Scholar 

  17. S. Maeda J. Lameh W. G. Mallet M. Phillip J. Ramachandran W. Sadee (1990) ArticleTitleInternalization of the hm1 muscarinic cholinergic receptor involves the third cytoplasmic loop FEBS J. 269 386–389 Occurrence Handle10.1016/0014-5793(90)81199-X Occurrence Handle1:CAS:528:DyaK3cXmtVGhsLY%3D

    Article  CAS  Google Scholar 

  18. P. Hogger M. S. Shockley J. Lameh W. Sadee (1995) ArticleTitleActivating and inactivating mutations in N- and C-terminal i3 loop junctions of muscarinic acetylcholine hm1 receptors J. Biol. Chem. 270 7405–7410 Occurrence Handle10.1074/jbc.270.13.7405 Occurrence Handle1:CAS:528:DyaK2MXkvVOjs7k%3D Occurrence Handle7706286

    Article  CAS  PubMed  Google Scholar 

  19. M. A. Schumacher A. F. Rivard H. P. Bachinger J. Adelman (2001) ArticleTitleStructure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin Nature 410 1120–1124 Occurrence Handle10.1038/35074145 Occurrence Handle1:CAS:528:DC%2BD3MXjsVCrt70%3D Occurrence Handle11323678

    Article  CAS  PubMed  Google Scholar 

  20. F.-Y. Zeng J. Wess (1999) ArticleTitleIdentification and molecular characterization of m3 muscarinic receptor dimers J. Biol. Chem. 274 19487–19497 Occurrence Handle10.1074/jbc.274.27.19487 Occurrence Handle1:CAS:528:DyaK1MXksVWktbY%3D Occurrence Handle10383466

    Article  CAS  PubMed  Google Scholar 

  21. N. H. Lee N. S. M. Geoghagen E. Cheng R. T. Cline C. M. Fraser (1996) ArticleTitleAlanine scanning mutagenesis of conserved arginine/lysine–arginine/lysine-x-x-arginine/lysine G protein-activating motifs on m1 muscarinic acetylcholine receptors Mol. Pharmacol. 50 140–148 Occurrence Handle1:CAS:528:DyaK28XksVyls7g%3D Occurrence Handle8700106

    CAS  PubMed  Google Scholar 

  22. M. Kataoka J. F. Head B. A. Seaton D. M. Engelman (1989) ArticleTitleMelittin binding causes a large calcium-dependent conformational change in calmodulin Proc. Natl. Acad. Sci. U.S.A. 86 6944–6948 Occurrence Handle1:CAS:528:DyaL1MXlvV2rsbg%3D Occurrence Handle2780551

    CAS  PubMed  Google Scholar 

  23. T. Higashijima S. Uzu T. Nakajima E. M. Ross (1988) ArticleTitleMastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G-proteins) J. Biol. Chem. 263 6491–6494 Occurrence Handle1:CAS:528:DyaL1cXitFOmsbg%3D Occurrence Handle3129426

    CAS  PubMed  Google Scholar 

  24. T. Higashijima J. Burnier E. M. Ross (1990) ArticleTitleRegulation of Gi and Go by mastoparan, related amphiphilic peptides, and hydrophobic amines: mechanisms and structural determinants of activity J. Biol. Chem. 265 14176–14186 Occurrence Handle1:CAS:528:DyaK3cXmt1ygsL8%3D Occurrence Handle2117607

    CAS  PubMed  Google Scholar 

  25. D. A. Malencik S. R. Anderson (1983) ArticleTitleHigh affinity binding of the mastoporans by calmodulin Biochem. Biophy. Res. Commun. 114 50–56 Occurrence Handle10.1016/0006-291X(83)91592-9 Occurrence Handle1:CAS:528:DyaL3sXks1KmtLg%3D

    Article  CAS  Google Scholar 

  26. D. H. O'Day M. A. Myrc (2004) ArticleTitleCalmodulin-binding domains in Alzheimer's disease proteins: extending the calcium hypothesis Biochem. Biophy. Res. Commun. 320 1051–1054 Occurrence Handle10.1016/j.bbrc.2004.06.070

    Article  Google Scholar 

  27. Z.-L. Lu J. W. Saldanha E. C. Hulme (2002) ArticleTitleSeven-transmembrane receptors: crystals clarify Trends Pharmacol. Sci. 23 140–146 Occurrence Handle10.1016/S0165-6147(00)01973-8 Occurrence Handle1:CAS:528:DC%2BD38XhsFCmsLk%3D Occurrence Handle11879682

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by NIH Research Grant DA04166, from the National Institute on Drug Abuse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie L. Lucas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucas, J.L., Wang, D. & Sadée, W. Calmodulin Binding to Peptides Derived from the i3 Loop of Muscarinic Receptors. Pharm Res 23, 647–653 (2006). https://doi.org/10.1007/s11095-006-9784-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9784-9

Key Words

Navigation