Skip to main content

Advertisement

Log in

Hormonal Regulation of BCRP Expression in Human Placental BeWo Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

We investigated whether the pregnancy-related hormones, estriol (E3), testosterone, human placental lactogen (hPL), human prolactin (hPRL), and human chorionic gonadotropin (hCG) affect BCRP expression in human placental BeWo cells.

Materials and Methods

The effects of these hormones on BCRP protein and mRNA expression in BeWo cells were determined by immunoblotting and quantitative real-time RT-PCR, respectively. The effects of these hormones on membrane localization of BCRP in BeWo cells were examined by immunofluorescent confocal microscopy.

Results

E3, hPL, and hPRL significantly increased BCRP protein and mRNA approximately two to threefold at physiological concentrations. Induction of BCRP by E3 was abrogated by the estrogen receptor (ER) antagonist ICI-182,780. However, knock-down of ERα by RNA interference did not abolish the inductive effect of E3. Testosterone by itself did not affect BCRP expression at physiological concentrations. However, testosterone together with 17β-estradiol (E2) increased BCRP protein and mRNA approximately twofold, and this induction was abolished by ICI-182,780 or the testosterone receptor (TR) antagonist flutamide or knock-down of ERα expression. Further analysis revealed that E2 increased TR mRNA approximately 5.9-fold, suggesting that testosterone in combination with E2 increases BCRP expression, possibly through E2-mediated up-regulation of TR. hCG at physiological concentrations had no effect on BCRP expression.

Conclusions

E3, hPL, hPRL, and testosterone in combination with E2 may up-regulate BCRP expression in the placenta during pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

AhR:

aryl hydrocarbon receptor

BCRP:

breast cancer resistance protein

DMSO:

dimethyl sulfoxide

E2 :

17β-estradiol

E3 :

estriol

hCG:

human chorionic gonadotropin

HIF1α:

hypoxia-inducible factor 1α

hPL:

human placental lactogen

hPRL:

human prolactin

JAK2:

Janus kinase 2

P4 :

progesterone

PBS:

phosphate-buffered saline

STAT:

the signal transducers and activators of transcription

References

  1. L. A. Doyle, W. Yang, L. V. Abruzzo, T. Krogmann, Y. Gao, A. K. Rishi, and D. D. Ross. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl. Acad. Sci. U. S. A. 95:15665–15670 (1998).

    Article  PubMed  CAS  Google Scholar 

  2. R. Allikmets, L. M. Schriml, A. Hutchinson, V. Romano-Spica, and M. Dean. A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res. 58:5337–5339 (1998).

    PubMed  CAS  Google Scholar 

  3. K. Miyake, L. Mickley, T. Litman, Z. Zhan, R. Robey, B. Cristensen, M. Brangi, L. Greenberger, M. Dean, T. Fojo, and S. E. Bates. Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: demonstration of homology to ABC transport genes. Cancer Res. 59:8–13 (1999).

    PubMed  CAS  Google Scholar 

  4. Q. Mao, and J. D. Unadkat. Role of the breast cancer resistance protein (ABCG2) in drug transport. AAPS J. 7:E118–133 (2005).

    Article  PubMed  CAS  Google Scholar 

  5. L. A. Doyle, and D. D. Ross. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene. 22:7340–7358 (2003).

    Article  PubMed  CAS  Google Scholar 

  6. Y. Zhang, A. Gupta, H. Wang, L. Zhou, R. R. Vethanayagam, J. D. Unadkat, and Q. Mao. BCRP transports dipyridamole and is inhibited by calcium channel blockers. Pharm. Res. 22:2023–2034 (2005).

    Article  PubMed  CAS  Google Scholar 

  7. M. Maliepaard, G. L. Scheffer, I. F. Faneyte, M. A. van Gastelen, A. C. Pijnenborg, A. H. Schinkel, M. J. van De Vijver, R. J. Scheper, and J. H. Schellens. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res. 61:3458–3464 (2001).

    PubMed  CAS  Google Scholar 

  8. S. Cisternino, C. Mercier, F. Bourasset, F. Roux, and J. M. Scherrmann. Expression, up-regulation, and transport activity of the multidrug-resistance protein abcg2 at the mouse blood–brain barrier. Cancer Res. 64:3296–3301 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. J. W. Jonker, J. W. Smit, R. F. Brinkhuis, M. Maliepaard, J. H. Beijnen, J. H. Schellens, and A. H. Schinkel. Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J. Natl. Cancer Inst. 92:1651–1656 (2000).

    Article  PubMed  CAS  Google Scholar 

  10. C. M. Kruijtzer, J. H. Beijnen, H. Rosing, W. W. ten Bokkel Huinink, M. Schot, R. C. Jewell, E. M. Paul, and J. H. Schellens. Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918. J. Clin. Oncol. 20:2943–2950 (2002).

    Article  PubMed  CAS  Google Scholar 

  11. P. Breedveld, N. Zelcer, D. Pluim, O. Sonmezer, M. M. Tibben, J. H. Beijnen, A. H. Schinkel, O. van Tellingen, P. Borst, and J. H. Schellens. Mechanism of the pharmacokinetic interaction between methotrexate and benzimidazoles: potential role for breast cancer resistance protein in clinical drug–drug interactions. Cancer Res. 64:5804–5811 (2004).

    Article  PubMed  CAS  Google Scholar 

  12. M. Hirano, K. Maeda, S. Matsushima, Y. Nozaki, H. Kusuhara, and Y. Sugiyama. Involvement of BCRP (ABCG2) in the biliary excretion of pitavastatin. Mol. Pharmacol. 68:800–807 (2005).

    PubMed  CAS  Google Scholar 

  13. H. Zaher, A. A. Khan, J. Palandra, T. G. Brayman, L. Yu, and J. A. Ware. Breast cancer resistance protein (Bcrp/abcg2) is a major determinant of sulfasalazine absorption and elimination in the mouse. Mol. Pharm. 3:55–61 (2006).

    Article  PubMed  CAS  Google Scholar 

  14. F. Staud, Z. Vackova, K. Pospechova, P. Pavek, M. Ceckova, A. Libra, L. Cygalova, P. Nachtigal, and Z. Fendrich. Expression and transport activity of breast cancer resistance protein (Bcrp/Abcg2) in dually perfused rat placenta and HRP-1 cell line. J. Pharmacol. Exp. Ther. 319:53–62 (2006).

    Article  PubMed  CAS  Google Scholar 

  15. J. Kraemer, J. Klein, A. Lubetsky, and G. Koren. Perfusion studies of glyburide transfer across the human placenta: implications for fetal safety. Am. J. Obstet. Gynecol. 195:270–274 (2006).

    Article  PubMed  CAS  Google Scholar 

  16. C. Gedeon, J. Behravan, G. Koren, and M. Piquette-Miller. Transport of glyburide by placental ABC transporters: implications in fetal drug exposure. Placenta. 27:1096–1102 (2006).

    Article  PubMed  CAS  Google Scholar 

  17. H. Wang, X. Wu, K. Hudkins, A. Mikheev, H. Zhang, A. Gupta, J. D. Unadkat, and Q. Mao. Expression of the breast cancer resistance protein (Bcrp1/Abcg2) in tissues from pregnant mice: effects of pregnancy and correlations with nuclear receptors. Am. J. Physiol. Endocrinol. Metab. 291:E1295–1304 (2006).

    Article  PubMed  CAS  Google Scholar 

  18. H. E. Meyer zu Schwabedissen, M. Grube, A. Dreisbach, G. Jedlitschky, K. Meissner, K. Linnemann, C. Fusch, C. A. Ritter, U. Volker, and H. K. Kroemer. Epidermal growth factor-mediated activation of the map kinase cascade results in altered expression and function of ABCG2 (BCRP). Drug Metab. Dispos. 34:524–533 (2006).

    Article  PubMed  CAS  Google Scholar 

  19. H. Wang, L. Zhou, A. Gupta, R. R. Vethanayagam, Y. Zhang, J. D. Unadkat, and Q. Mao. Regulation of BCRP/ABCG2 expression by progesterone and 17beta-estradiol in human placental BeWo cells. Am. J. Physiol. Endocrinol. Metab. 290:E798–807 (2006).

    Article  PubMed  CAS  Google Scholar 

  20. M. Peter, H. G. Dorr, and W. G. Sippell. Changes in the concentrations of dehydroepiandrosterone sulfate and estriol in maternal plasma during pregnancy: a longitudinal study in healthy women throughout gestation and at term. Horm. Res. 42:278–281 (1994).

    Article  PubMed  CAS  Google Scholar 

  21. B. T. Zhu, G. Z. Han, J. Y. Shim, Y. Wen, and X. R. Jiang. Quantitative structure–activity relationship of various endogenous estrogen metabolites for human estrogen receptor alpha and beta subtypes: Insights into the structural determinants favoring a differential subtype binding. Endocrinology. 147:4132–4150 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. M. A. Rivarola, M. G. Forest, and C. J. Migeon. Testosterone, androstenedione and dehydroepiandrosterone in plasma during pregnancy and at delivery: concentration and protein binding. J. Clin. Endocrinol. Metab. 28:34–40 (1968).

    PubMed  CAS  Google Scholar 

  23. S. Batraand, and L. P. Bengtsson. 17 beta-Estradiol and progesterone concentrations in myometrium of pregnancy and their relationships to concentrations in peripheral plasma. J. Clin. Endocrinol. Metab. 46:622–626 (1978).

    Article  Google Scholar 

  24. F. S. Khan-Dawood, and M. Y. Dawood. Estrogen and progesterone receptor and hormone levels in human myometrium and placenta in term pregnancy. Am. J. Obstet. Gynecol. 150:501–505 (1984).

    PubMed  CAS  Google Scholar 

  25. J. Fujimoto, M. Nishigaki, M. Hori, S. Ichigo, T. Itoh, and T. Tamaya. The effect of estrogen and androgen on androgen receptors and mRNA levels in uterine leiomyoma, myometrium and endometrium of human subjects. J. Steroid. Biochem. Mol. Biol. 50:137–143 (1994).

    Article  PubMed  CAS  Google Scholar 

  26. O. O. Adesanya-Famuyiwa, J. Zhou, G. Wu, and C. Bondy. Localization and sex steroid regulation of androgen receptor gene expression in rhesus monkey uterus. Obstet. Gynecol. 93:265–270 (1999).

    Article  PubMed  CAS  Google Scholar 

  27. S. Rodriguez-Cuenca, M. Monjo, A. M. Proenza, and P. Roca. Depot differences in steroid receptor expression in adipose tissue: possible role of the local steroid milieu. Am. J. Physiol. Endocrinol. Metab. 288:E200–207 (2005).

    Article  PubMed  CAS  Google Scholar 

  28. M. J. Soares. The prolactin and growth hormone families: pregnancy-specific hormones/cytokines at the maternal–fetal interface. Reprod. Biol. Endocrinol. 2:51 (2004).

    Article  PubMed  CAS  Google Scholar 

  29. S. Handwerger. Clinical counterpoint: the physiology of placental lactogen in human pregnancy. Endocr. Rev. 12:329–336 (1991).

    PubMed  CAS  Google Scholar 

  30. S. Handwerger, and M. Freemark. The roles of placental growth hormone and placental lactogen in the regulation of human fetal growth and development. J. Pediatr. Endocrinol. Metab. 13:343–356 (2000).

    PubMed  CAS  Google Scholar 

  31. M. Freemark. Regulation of maternal metabolism by pituitary and placental hormones: roles in fetal development and metabolic programming. Horm. Res. 65(Suppl 3):41–49 (2006).

    Article  PubMed  CAS  Google Scholar 

  32. I. Sanchez-Vera, B. Bonet, M. Viana, A. Quintanar, and A. Lopez-Salva. Increased low-density lipoprotein susceptibility to oxidation in pregnancies and fetal growth restriction. Obstet. Gynecol. 106:345–351 (2005).

    PubMed  CAS  Google Scholar 

  33. O. A. Kletzky, F. Rossman, S. I. Bertolli, L. D. Platt, and D. R. Mishell, Jr. Dynamics of human chorionic gonadotropin, prolactin, and growth hormone in serum and amniotic fluid throughout normal human pregnancy. Am. J. Obstet. Gynecol. 151:878–884 (1985).

    PubMed  CAS  Google Scholar 

  34. V. Goffin, K. T. Shiverick, P. A. Kelly, and J. A. Martial. Sequence–function relationships within the expanding family of prolactin, growth hormone, placental lactogen, and related proteins in mammals. Endocr. Rev. 17:385–410 (1996).

    Article  PubMed  CAS  Google Scholar 

  35. H. Rui, J. Y. Djeu, G. A. Evans, P. A. Kelly, and W. L. Farrar. Prolactin receptor triggering. Evidence for rapid tyrosine kinase activation. J. Biol. Chem. 267:24076–24081 (1992).

    PubMed  CAS  Google Scholar 

  36. C. Schindler, and J. E. Darnell, Jr. Transcriptional responses to polypeptide ligands: the JAK–STAT pathway. Annu. Rev. Biochem. 64:621–651 (1995).

    Article  PubMed  CAS  Google Scholar 

  37. J. Cao, P. M. Gowri, T. C. Ganguly, M. Wood, J. F. Hyde, F. Talamantes, and M. Vore. PRL, placental lactogen, and GH induce NA(+)/taurocholate-cotransporting polypeptide gene expression by activating signal transducer and activator of transcription-5 in liver cells. Endocrinology. 142:4212–4222 (2001).

    Article  PubMed  CAS  Google Scholar 

  38. J. W. Jonker, G. Merino, S. Musters, A. E. van Herwaarden, E. Bolscher, E. Wagenaar, E. Mesman, T. C. Dale, and A. H. Schinkel. The breast cancer resistance protein BCRP (ABCG2) concentrates drugs and carcinogenic xenotoxins into milk. Nat. Med. 11:127–129 (2005).

    Article  PubMed  CAS  Google Scholar 

  39. A. E. van Herwaarden, E. Wagenaar, G. Merino, J. W. Jonker, H. Rosing, J. H. Beijnen, and A. H. Schinkel. Multidrug transporter ABCG2/breast cancer resistance protein secretes riboflavin (vitamin B2) into milk. Mol. Cell. Biol. 27(4):1247–1253 (2007).

    Article  PubMed  CAS  Google Scholar 

  40. M. C. Neville, T. B. McFadden, and I. Forsyth. Hormonal regulation of mammary differentiation and milk secretion. J. Mammary Gland Biol. Neoplasia. 7:49–66 (2002).

    Article  PubMed  Google Scholar 

  41. S. Yasuda, S. Itagaki, T. Hirano, and K. Iseki. Expression level of ABCG2 in the placenta decreases from the mid stage to the end of gestation. Biosci. Biotechnol. Biochem. 69:1871–1876 (2005).

    Article  PubMed  CAS  Google Scholar 

  42. Y. Imai, E. Ishikawa, S. Asada, and Y. Sugimoto. Estrogen-mediated post transcriptional down-regulation of breast cancer resistance protein/ABCG2. Cancer Res. 65:596–604 (2005).

    Article  PubMed  CAS  Google Scholar 

  43. J. Cao, M. Wood, Y. Liu, T. Hoffman, J. Hyde, O. K. Park-Sarge, and M. Vore. Estradiol represses prolactin-induced expression of Na+/taurocholate cotransporting polypeptide in liver cells through estrogen receptor-alpha and signal transducers and activators of transcription 5a. Endocrinology. 145:1739–1749 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from NIH grants HD044404 (to QM and JDU) and GM073715 (to QM). We also thank Yi Zhang, Lin Zhou, Eun-Woo Lee, and Weibin Zhou (Department of Pharmaceutics, University of Washington) for technical assistance in cell culture and immunoblotting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingcheng Mao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Unadkat, J.D. & Mao, Q. Hormonal Regulation of BCRP Expression in Human Placental BeWo Cells. Pharm Res 25, 444–452 (2008). https://doi.org/10.1007/s11095-007-9432-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9432-z

Key words

Navigation