Skip to main content

Advertisement

Log in

Are circulating gonadotropin isoforms naturally occurring biased agonists? Basic and therapeutic implications

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

The gonadotropins, luteinizing hormone, human chorionic gonadotropin and follicle-stimulating hormone, are key regulators of reproduction. As a result of this function, they have been the focus of research for many years. Isolated or recombinant proteins have been successfully used therapeutically for the treatment of infertility; and, in the case of compounds that block gonadotropin activity, for their potential utility in contraception. Until recently, selective small molecules modulating gonadotropin receptor activity have proven difficult to identify. The gonadotropins are glycoproteins that are released into the plasma as differently glycosylated isoforms and bind to specific G protein-coupled receptors. The degree of glycosylation on the gonadotropins has been shown to be important for the biological activities of these hormones and is differentially regulated depending on the steroidal status. Recent data from the study of glycosylated variants of LH, hCG and FSH have revealed that these isoforms have distinct signaling properties that allow for gonadotropin pleiotropic signals to be transduced effectively at the level of the receptor. Thus, glycosylated variants of the gonadotropins behave as biased agonists. Recently, newly developed, small molecule, synthetic allosteric compounds have been identified that are capable of mimicking this biased signaling. This opens the door to development of orally available, drug-like therapies for reproductive disorders that offer similar pleiotropic richness as that offered by the complex, endogenous hormones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Freeman ME. The neuroendocrine control of the rat estrous cycle. In: Knobil E, Neill JD, editors. The physiology of reproduction. New York: Raven; 1994.

    Google Scholar 

  2. Valove FM, Finch C, Anasti JN, Froehlich J, Flack MR. Receptor binding and signal transduction are dissociable functions requiring different sites on follicle-stimulating hormone. Endocrinology. 1994;135:2657–61.

    Article  PubMed  CAS  Google Scholar 

  3. Flack MR, Froehlich J, Bennet AP, Anasti J, Nisula BC. Site-directed mutagenesis defines the individual roles of the glycosylation sites on follicle-stimulating hormone. J Biol Chem. 1994;269:14015–20.

    PubMed  CAS  Google Scholar 

  4. Galle PC, Ulloa-Aguirre A, Chappel SC. Effects of oestradiol, phenobarbitone and luteinizing hormone releasing hormone upon the isoelectric profile of pituitary follicle-stimulating hormone in ovariectomized hamsters. J Endocrinol. 1983;99:31–9.

    Article  PubMed  CAS  Google Scholar 

  5. Chappel SC, Ulloa-Aguirre A, Ramaley JA. Sexual maturation in female rats: time-related changes in the isoelectric focusing pattern of anterior pituitary follicle-stimulating hormone. Biol Reprod. 1983;28:196–205.

    Article  PubMed  CAS  Google Scholar 

  6. Ulloa-Aguirre A, Mejia JJ, Dominguez R, Guevara-Aguirre J, Diaz-Sanchez V, Larrea F. Microheterogeneity of anterior pituitary FSH in the male rat: isoelectric focusing pattern throughout sexual maturation. J Endocrinol. 1986;110:539–49.

    Article  PubMed  CAS  Google Scholar 

  7. Padmanabhan V, Lang LL, Sonstein J, Kelch RP, Beitins IZ. Modulation of serum follicle-stimulating hormone bioactivity and isoform distribution by estrogenic steroids in normal women and in gonadal dysgenesis. J Clin Endocrinol Metab. 1988;67:465–73.

    Article  PubMed  CAS  Google Scholar 

  8. Ulloa-Aguirre A, Espinoza R, Damian-Matsumura P, Larrea F, Flores A, Morales L, et al. Studies on the microheterogeneity of anterior pituitary follicle-stimulating hormone in the female rat. Isoelectric focusing pattern throughout the estrous cycle. Biol Reprod. 1988;38:70–8.

    Article  PubMed  CAS  Google Scholar 

  9. Wide L, Naessen T, Phillips DJ. Effect of chronic daily oral administration of 17 beta-oestradiol and norethisterone on the isoforms of serum gonadotrophins in post-menopausal women. Clin Endocrinol (Oxf). 1995;42:59–64.

    Article  CAS  Google Scholar 

  10. Ulloa-Aguirre A, Midgley Jr AR, Beitins IZ, Padmanabhan V. Follicle-Stimulating Isohormones: characterization and Physiological Relevance. Endocr Rev. 1995;16:765–87.

    PubMed  CAS  Google Scholar 

  11. Matzuk MM, Keene JL, Boime I. Site specificity of the chorionic gonadotropin N-linked oligosaccharides in signal transduction. J Biol Chem. 1989;264:2409–14.

    PubMed  CAS  Google Scholar 

  12. Bishop L, Robertson D, Cahir N, Schofield P. Specific roles for the asparagine-linked carbohydrate residues of recombinant human follicle stimulating hormone in receptor binding and signal transduction. Mol Endocrinol. 1994;8:722–31.

    Article  PubMed  CAS  Google Scholar 

  13. Bousfield GR, Butnev VY, Butnev VY, Nguyen VT, Gray CM, Dias JA, et al. Differential effects of αSubunit asparagine56 oligosaccharide structure on equine lutropin and follitropin hybrid conformation and receptor-binding activity. Biochemistry. 2004;43:10817–33.

    Article  PubMed  CAS  Google Scholar 

  14. Browne ES, Flasch MV, Sairam MR, Bhalla VK. Is deglycosylated human chorionic gonadotropin an antagonist to human chorionic gonadotropin? Characterization of deglycosylated human chorionic gonadotropin action in two testicular interstitial cell fractions. Biochim Biophys Acta (BBA)—General Subjects. 1990;1033:226–34.

    Article  CAS  Google Scholar 

  15. Nguyen VT, Singh V, Butnev VY, Gray CM, Westfall S, Davis JS, et al. Inositol phosphate stimulation by LH requires the entire [alpha] Asn56 oligosaccharide. Mol Cell Endocrinol. 2003;199:73–86.

    Article  PubMed  CAS  Google Scholar 

  16. Shahabi S, Oz UA, Bahado-Singh RO, Mahoney MJ, Omrani A, Baumgarten A, et al. Serum hyperglycosylated hCG: a potential screening test for fetal Down syndrome. Prenat Diagn. 1999;19:488–90.

    Article  PubMed  CAS  Google Scholar 

  17. Sairam MR, Jiang LG. Comparison of the biological and immunological properties of glycosylation deficient human chorionic gonadotropin variants produced by site directed mutagenesis and chemical deglycosylation. Mol Cell Endocrinol. 1992;85:227–35.

    Article  PubMed  CAS  Google Scholar 

  18. Foord SM, Bonner TI, Neubig RR, Rosser EM, Pin J-P, Davenport AP, et al. International union of pharmacology. XLVI. G protein-coupled receptor list. Pharmacol Rev. 2005;57:279–88.

    Article  PubMed  CAS  Google Scholar 

  19. Sprengel R, Braun T, Nikolics K, Segaloff DL, Seeburg PH. The testicular receptor for follicle stimulating hormone: structure and functional expression of cloned cDNA. Mol Endocrinol. 1990;4:525–30.

    Article  PubMed  CAS  Google Scholar 

  20. Heckert LL, Daley IJ, Griswold MD. Structural organization of the follicle-stimulating hormone receptor gene. Mol Endocrinol. 1992;6:70–80.

    Article  PubMed  CAS  Google Scholar 

  21. Hsu SY, Kudo M, Chen T, Nakabayashi K, Bhalla A, van der Spek PJ, et al. The three subfamilies of leucine-rich repeat-containing G protein-coupled receptors (LGR): identification of LGR6 and LGR7 and the signaling mechanism for LGR7. Mol Endocrinol. 2000;14:1257–71.

    Article  PubMed  CAS  Google Scholar 

  22. Davis D, Liu X, Segaloff DL. Identification of the sites of N-linked glycosylation on the follicle- stimulating hormone (FSH) receptor and assessment of their role in FSH receptor function. Mol Endocrinol. 1995;9:159–70.

    Article  PubMed  CAS  Google Scholar 

  23. Davis DP, Rozell TG, Liu X, Segaloff DL. The six N-linked carbohydrates of the lutropin/choriogonadotropin receptor are not absolutely required for correct folding, cell surface expression, hormone binding, or signal transduction. Mol Endocrinol. 1997;11:550–62.

    Article  PubMed  CAS  Google Scholar 

  24. Davis DP, Segaloff DL, Ravi I, Hildebrandt JD. N-linked carbohydrates on G protein-coupled receptors: Mapping sites of attachment and determining functional roles. In: Methods in Enzymology: Academic Press; 200–12; 2002.

  25. Ascoli M, Fanelli F, Segaloff DL. The lutropin/choriogonadotropin receptor, a 2002 perspective. Endocr Rev. 2002;23:141–74.

    Article  PubMed  CAS  Google Scholar 

  26. Kusuda S, Dufau ML. Characterization of ovarian gonadotropin receptor. Monomer and associated form of the receptor. J Biol Chem. 1988;263:3046–9.

    PubMed  CAS  Google Scholar 

  27. Grewal N, Nagpal S, Chavali GB, Majumdar SS, Pal R, Salunke DM. Ligand-induced receptor dimerization may be critical for signal transduction by choriogonadotropin. Biophys J. 1997;73:1190–7.

    Article  PubMed  CAS  Google Scholar 

  28. Roess DA, Horvat RD, Munnelly H, Barisas BG. Luteinizing hormone receptors are self-associated in the plasma membrane. Endocrinology. 2000;141:4518–23.

    Article  PubMed  CAS  Google Scholar 

  29. Thomas RM, Nechamen CA, Mazurkiewicz JE, Muda M, Palmer S, Dias JA. Follice-stimulating hormone receptor forms oligomers and shows evidence of carboxyl-terminal proteolytic processing. Endocrinology. 2007;148:1987–95.

    Article  PubMed  CAS  Google Scholar 

  30. Rivero-Muller A, Chou Y-Y, Ji I, Lajic S, Hanyaloglu AC, Jonas K, et al. Rescue of defective G protein-coupled receptor function in vivo by intermolecular cooperation. Proc Natl Acad Sci. 2010;107:2319–24.

    Article  PubMed  CAS  Google Scholar 

  31. Hirakawa T, Galet C, Kishi M, Ascoli M. GIPC binds to the Human Lutropin Receptor (hLHR) through an unusual PDZ domain binding motif, and it regulates the sorting of the internalized human choriogonadotropin and the density of cell surface hLHR. J Biol Chem. 2003;278:49348–57.

    Article  PubMed  CAS  Google Scholar 

  32. Nechamen CA, Thomas RM, Cohen BD, Acevedo G, Poulikakos PI, Testa JR, et al. Human Follicle-Stimulating Hormone (FSH) receptor interacts with the adaptor protein APPL1 in HEK 293 Cells: potential involvement of the PI3K pathway in FSH signaling. Biol Reprod. 2004;71:629–36.

    Article  PubMed  CAS  Google Scholar 

  33. Dias JA, Mahale SD, Nechamen CA, Davydenko O, Thomas RM, Ulloa-Aguirre A. Emerging roles for the FSH receptor adapter protein APPL1 and overlap of a putative 14-3-3[tau] interaction domain with a canonical G-protein interaction site. Mol Cell Endocrinol. 2010;329:17–25.

    Article  PubMed  CAS  Google Scholar 

  34. Thomas RM, Nechamen CA, Mazurkiewicz JE, Ulloa-Aguirre A, Dias JA. The adapter protein APPL1 links FSH receptor to inositol 1,4,5-triphosphate production and is implicated in intracellular Ca2+ mobilization. Endocrinology. 2011;152:1691–701.

    Article  PubMed  CAS  Google Scholar 

  35. Dias JA. Is there any physiological role for gonadotrophin oligosaccharide heterogeneity in humans?: II. A biochemical point of view. Hum Reprod. 2001;16:825–30.

    Article  PubMed  CAS  Google Scholar 

  36. Arey BJ, Stevis PE, Lopez FJ. Induction of promiscuous G protein coupling of the Follicle-Stimulating Hormone (FSH) receptor: a novel mechanism for transducing pleiotropic actions of FSH isoforms. Mol Endocrinol. 1997;11:517.

    Article  PubMed  CAS  Google Scholar 

  37. Arey BJ, Yanofsky SD, Claudia Perez M, Holmes CP, Wrobel J, Gopalsamy A, et al. Differing pharmacological activities of thiazolidinone analogs at the FSH receptor. Biochem Biophys Res Commun. 2008;368:723–8.

    Article  PubMed  CAS  Google Scholar 

  38. Kenakin T. Functional selectivity through protean and biased agonism: who steers the ship? Mol Pharmacol. 2007;72:1393–401.

    Article  PubMed  CAS  Google Scholar 

  39. Ulloa-Aguirre A, Timossi C, Barrios-de-Tomasi J, Maldonado A, Nayudu P. Impact of carbohydrate heterogeneity in function of follicle-stimulating hormone: studies derived from in vitro and in vivo models. Biol Reprod. 2003;69:379–89.

    Article  PubMed  CAS  Google Scholar 

  40. Munshi R, Linden J. Co-purification of A1 adenosine receptors and guanine nucleotide-binding proteins from bovine brain. J Biol Chem. 1989;264:14853–9.

    PubMed  CAS  Google Scholar 

  41. Munshi R, Pang IH, Sternweis PC, Linden J. A1 adenosine receptors of bovine brain couple to guanine nucleotide-binding proteins Gi1, Gi2, and Go. J Biol Chem. 1991;266:22285–9.

    PubMed  CAS  Google Scholar 

  42. Kimura K, White BH, Sidhu A. Coupling of human D-1 dopamine receptors to different guanine nucleotide binding proteins. Evidence that D-1 dopamine receptors can couple to both Gs and G(o). J Biol Chem. 1995;270:14672–8.

    Article  PubMed  CAS  Google Scholar 

  43. Gilchrist RL, Ryu K-S, Ji I, Ji TH. The luteinizing hormone/chorionic gonadotropin receptor has distinct transmembrane conductors for cAMP and inositol phosphate signals. J Biol Chem. 1996;271:19283–7.

    Article  PubMed  CAS  Google Scholar 

  44. Kenakin T, Miller LJ. Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev. 2010;62:265–304.

    Article  PubMed  CAS  Google Scholar 

  45. Mukherjee S, Palczewski K, Gurevich VV, Hunzicker-Dunn M. β-arrestin-dependent desensitization of luteinizing hormone/choriogonadotropin receptor is prevented by a synthetic peptide corresponding to the third intracellular loop of the receptor. J Biol Chem. 1999;274:12984–9.

    Article  PubMed  CAS  Google Scholar 

  46. Bhaskaran RS, Min L, Krishnamurthy H, Ascoli M. Studies with chimeras of the gonadotropin receptors reveal the importance of third intracellular loop threonines on the formation of the receptor/nonvisual arrestin complexâ€. Biochemistry. 2003;42:13950–9.

    Article  PubMed  CAS  Google Scholar 

  47. Kara E, Crepieux P, Gauthier C, Martinat N, Piketty V, Guillou F, et al. A phosphorylation cluster of five serine and threonine residues in the C-terminus of the follicle-stimulating hormone receptor is important for desensitization but not for ss-arrestin-mediated ERK activation. Mol Endocrinol. 2006;20:3014–26.

    Article  PubMed  CAS  Google Scholar 

  48. Tranchant T, Durand G, Gauthier C, Crépieux P, Ulloa-Aguirre A, Royère D, et al. Preferential [beta]-arrestin signalling at low receptor density revealed by functional characterization of the human FSH receptor A189 V mutation. Mol Cell Endocrinol. 2011;331:109–18.

    Article  PubMed  CAS  Google Scholar 

  49. Daub H, Ulrich Weiss F, Wallasch C, Ullrich A. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature. 1996;379:557–60.

    Article  PubMed  CAS  Google Scholar 

  50. Wetzker R, Bohmer F-D. Transactivation joins multiple tracks to the ERK/MAPK cascade. Nat Rev Mol Cell Biol. 2003;4:651–7.

    Article  PubMed  CAS  Google Scholar 

  51. Reeve JR, Keire DA, Coskun T, Green GM, Evans C, Ho FJ, et al. Synthesis of biologically active canine CCK-58. Regul Pept. 2003;113:71–7.

    Article  PubMed  CAS  Google Scholar 

  52. Leduc M, Breton B, Gales C, Le Gouill C, Bouvier M, Chemtob S, et al. Functional selectivity of natural and synthetic prostaglandin EP4 receptor ligands. J Pharmacol Exp Ther. 2009;331:297–307.

    Article  PubMed  CAS  Google Scholar 

  53. Reeve JRJ, McVey DC, Bunnett NW, Solomon TE, Keire DA, Ho FJ, et al. Differences in receptor binding and stability to enzymatic digestion between CCK-8 and CCK-58. Pancreas. 2002;25:e50–5.

    Article  PubMed  Google Scholar 

  54. Leduc M, Breton B, Gales C, Le Gouill C, Bouvier M, Chemtob S, et al. Functional selectivity of natural and synthetic prostaglandin EP4 receptor ligands. J Pharmacol Exp Ther. 2009;331:297–307.

    Article  PubMed  CAS  Google Scholar 

  55. Ulloa-Aguirre A, Coutifaris C, Chappel SC. Multiple species of FSH are present within hamster anterior pituitary cells cultured in vitro. Acta Endocrinol Copenhagen. 1983;102:343–50.

    CAS  Google Scholar 

  56. Chappell SC, Bethea CL, Spies HG. Existence of multiple forms of follicle-stimulating hormone within anterior pituitaries of cynomolgus monkeys. J Med Primatol. 1984;14:177–94.

    Google Scholar 

  57. Bousfield GR, Butnev VY, Bidart JM, Dalpathado D, Irungu J, Desaire H. Chromatofocusing fails to separate hFSH isoforms on the basis of glycan structure. Biochemistry. 2008;47:1708–20.

    Article  PubMed  CAS  Google Scholar 

  58. Davis JS, West LA, Weakland LL, Farese RV. Human chorionic gonadotropin activates the inositol 1,4,5-trisphosphate-Ca2+ intracellular signalling system in bovine luteal cells. FEBS Lett. 1986;208:287–91.

    Article  PubMed  CAS  Google Scholar 

  59. Zor U, Bauminger S, Lamprecht SA, Koch Y, Chobsieng P, Lindner HR. Stimulation of cyclic AMP production in the rat ovary by luteinizing hormone: independence of prostaglandin mediation. Prostaglandins. 1973;4:499–507.

    Article  CAS  Google Scholar 

  60. Ulloa-Aguirre A, Espinoza R, Damian-Matsumura P, Larrea F, Flores A, Morales L, et al. Studies on the microheterogeneity of anterior pituitary follicle-stimulating hormone in the female rat: isoelectric focusing throughout the estrous cycle. Biol Reprod. 1988;38:70–8.

    Article  PubMed  CAS  Google Scholar 

  61. Coticchio G, Fleming S. Inhibition of phosphoinositide metabolism or chelation of intracellular calcium blocks FSH-induced but not spontaneous meiotic resumption in mouse oocytes. Dev Biol. 1998;203:201–9.

    Article  PubMed  CAS  Google Scholar 

  62. Sun L, Peng Y, Sharrow AC, Iqbal J, Zhang Z, Papachristou DJ, et al. FSH directly regulates bone mass. Cell. 2006;125:247–60.

    Article  PubMed  CAS  Google Scholar 

  63. Wehbi V, Decourtye J, Piketty V, Durand G, Reiter E, Maurel M-C. Selective modulation of follicle-stimulating hormone signaling pathways with enhancing equine chorionic gonadotropin/antibody immune complexes. Endocrinology. 2010;151:2788–99.

    Article  PubMed  CAS  Google Scholar 

  64. Kuroda K, Geyer H, Geyer R, Doerfler W, Klenk H-D. The oligosaccharides of influenza virus hemagglutinin expressed in insect cells by a baculovirus vector. Virology. 1990;174:418–29.

    Article  PubMed  CAS  Google Scholar 

  65. Logsdon NJ, Jones BC, Allman JC, Izotova L, Schwartz B, Pestka S, et al. The IL-10R2 binding hot spot on IL-22 is located on the N-terminal helix and is dependent on N-linked glycosylation. J Mol Biol. 2004;342:503–14.

    Article  PubMed  CAS  Google Scholar 

  66. Saremba S, Nickel J, Seher A, Kotzsch A, Sebald W, Mueller TD. Type I receptor binding of bone morphogenetic protein 6 is dependent on N-glycosylation of the ligand. FEBS J. 2008;275:172–83.

    Article  PubMed  CAS  Google Scholar 

  67. Darling RJ, Kuchibhotla U, Glaesner W, Micanovic R, Witcher DR, Beals JM. Glycosylation of erythropoietin affects receptor binding kinetics: role of electrostatic interactions. Biochemistry. 2002;41:14524–31.

    Article  PubMed  CAS  Google Scholar 

  68. Chappel SC, Bethea CL, Spies HG. Existence of multiple forms of follicle-stimulating hormone within the anterior pituitaries of cynomolgus monkeys. Endocrinology. 1984;115:452–61.

    Article  PubMed  CAS  Google Scholar 

  69. Ulloa-Aguirre A, Damian-Matsumura P, Espinoza R, Dominguez R, Morales L, Flores A. Effects of neonatal androgenization on the chromatofocusing pattern of anterior pituitary FSH in the female rat. J Endocrinol. 1990;126:323–32.

    Article  PubMed  CAS  Google Scholar 

  70. Wide L, Naessen T, Sundstrom-Poromaa I, Eriksson K. Sulfonation and sialylation of gonadotropins in women during the menstrual cycle, after menopause, and with polycystic ovarian syndrome and in men. J Clin Endocrinol Metab. 2007;92:4410–7.

    Article  PubMed  CAS  Google Scholar 

  71. Wide L, Naessen T. 17 beta-oestradiol counteracts the formation of the more acidic isoforms of follicle-stimulating hormone and luteinizing hormone after menopause. Clin Endocrinol (Oxf). 1994;40:783–9.

    Article  CAS  Google Scholar 

  72. Bidart J-M, Bellet D. Human chorionic gonadotropin Molecular forms, detection, and clinical implications. Trends Endocrinol Metab. 1993;4:285–91.

    Article  PubMed  CAS  Google Scholar 

  73. Arey B. Allosteric modulators of glycoprotein hormone receptors: discovery and therapeutic potential. Endocrine. 2008;34:1–10.

    Article  PubMed  CAS  Google Scholar 

  74. Yanofsky SD, Shen ES, Holden F, Whitehorn E, Aguilar B, Tate E, et al. Allosteric activation of the Follicle-stimulating Hormone (FSH) receptor by selective, nonpeptide agonists. J Biol Chem. 2006;281:13226–33.

    Article  PubMed  CAS  Google Scholar 

  75. van Straten NCR, Schoonus-Gerritsma GG, van Someren RG, Draaijer J, Adang AEP, Timmers CM, et al. The first orally active low molecular weight agonists for the LH receptor: thienopyrimidines with therapeutic potential for ovulation induction. Chembiochem. 2002;2002:1439–4227.

    Google Scholar 

  76. Jorand-Lebrun C, Brondyk B, Lin J, Magar S, Murray R, Reddy A, et al. Identification, synthesis, and biological evaluation of novel pyrazoles as low molecular weight luteinizing hormone receptor agonists. Bioorg Med Chem Lett. 2007;17:2080–5.

    Article  PubMed  CAS  Google Scholar 

  77. Guo T. Small molecule agonists and antagonists for the LH and FSH receptors. Curr Opin Ther Patents. 2005;15:1555–64.

    Article  CAS  Google Scholar 

  78. Mannaerts B. Novel FSH and LH agonists. From anovulation to assisted reproduction. Fourth World Congress on Ovulation, 2004, pp 157–72.

  79. Arey BJ, Deecher DC, Shen ES, Stevis PE, Meade Jr EH, Wrobel J, et al. Identification and characterization of a selective, nonpeptide follicle-stimulating hormone receptor antagonist. Endocrinology. 2002;143:3822–9.

    Article  PubMed  CAS  Google Scholar 

  80. Wrobel J, Green D, Jetter J, Kao W, Rogers J, Perez MC, et al. Synthesis of (bis)sulfonic acid, (bis)benzamides as follicle-stimulating hormone (FSH) antagonists. Bioorg Med Chem. 2002;10:639–56.

    Article  PubMed  CAS  Google Scholar 

  81. vanStraten NCR, vanBerkel THJ, Demont DR, Karstens WJF, Merkx R, Oosterom J, et al. Identification of substituted 6-amino-4-phenyltetrahydroquinoline derivatives: potent antagonists for the Follicle-Stimulating Hormone receptor. J Med Chem. 2005;48:1697–700.

    Article  CAS  Google Scholar 

  82. van Koppen C, Zaman G, Timmers C, Kelder J, Mosselman S, van de Lagemaat R, et al. A signaling-selective, nanomolar potent allosteric low molecular weight agonist for the human luteinizing hormone receptor. Naunyn Schmiedebergs Arch Pharmacol. 2008;378:503–14.

    Article  PubMed  CAS  Google Scholar 

  83. Arey BJ, Seethala R, Ma Z, Fura A, Morin J, Swartz J, et al. A novel calcium-sensing receptor antagonist transiently stimulates parathyroid hormone secretion in vivo. Endocrinology. 2005;146:2015–22.

    Article  PubMed  CAS  Google Scholar 

  84. Hu J, Jiang J, Costanzi S, Thomas CJ, Yang W, Jacobson KA, et al. A missense mutation in the seven-transmembrane domain of the human Ca2+ receptor converts a neagtive allosteric modulator into a positive allosteric modulator. J Biol Chem. 2006;281:21558–65.

    Article  PubMed  CAS  Google Scholar 

  85. Aschheim S. über die funktion des ovariums. Z Geburtsh Gynäk. 1926;90:387.

    Google Scholar 

  86. Smith PE. Hastening development of female genital system by daily homoplastic pituitary transplants. Proc Soc Exp Biol Med. 1926;24.

  87. Zondek B. Uber die funktion des ovariums. Z Geburtsh Gynäk. 1926;90:372.

    Google Scholar 

  88. Smith PE, Engle TE. Experimental evidence regarding the role of the anterior pituitary in the development and regulation of the genital system. Am J Anat. 1927;40.

  89. Medicine TPCotASoR. Use of exogenous gonadotropins in anovulatory women: a technical bulletin. Fertil Steril. 2008;90:S7–S12.

    Google Scholar 

  90. Filicori M, Cognigni GE, Pocognoli P, Tabarelli C, Ferlini F, Perri T, et al. Comparison of controlled ovarian stimulation with human menopausal gonadotropin or recombinant follicle-stimulating hormone. Fertil Steril. 2003;80:390–7.

    Article  PubMed  Google Scholar 

  91. Shoham Z, Balen A, Patel A, Jacobs HS. Results of ovulation induction using human menopausal gonadotropin or purified follicle-stimulating hormone in hypogonadotropic hypogonadism patients. Fertil Steril. 1991;56:1048–53.

    PubMed  CAS  Google Scholar 

  92. Couzinet B, Lestrat N, Brailly S, Forest M, Schaison G. Stimulation of ovarian follicular maturation with pure follicle-stimulating hormone in women with gonadotropin deficiency. J Clin Endocrinol Metab. 1988;66:552–6.

    Article  PubMed  CAS  Google Scholar 

  93. Recombinant human luteinizing hormone (LH) to support recombinant human follicle-stimulating hormone (FSH)-induced follicular development in LH- and FSH-deficient anovulatory women: a dose-finding study. The European Recombinant Human LH Study Group. J Clin Endocrinol Metab. 1998;83:1507–14.

  94. Filicori M, Cognigni GE, Taraborrelli S, Spettoli D, Ciampaglia W, de Fatis CT. Low-dose human chorionic gonadotropin therapy can improve sensitivity to exogenous follicle-stimulating hormone in patients with secondary amenorrhea. Fertil Steril. 1999;72:1118–20.

    Article  PubMed  CAS  Google Scholar 

  95. Manno M, Tomei F, Fasciani A, Costa M. Ovarian hyperstimulation syndrome: the best approaches for prevention and treatment: a mini-review. Curr Women’s Health Rev. 2007;3:49–54.

    Article  CAS  Google Scholar 

  96. Itskovitz J, Boldes R, Levron J, Erlik Y, Kahana L, Brandes JM. Induction of preovulatory luteinizing hormone surge and prevention of ovarian hyperstimulation syndrome by gonadotropin-releasing hormone agonist. Fertil Steril. 1991;56:213–20.

    PubMed  CAS  Google Scholar 

  97. Induction of final follicular maturation and early luteinization in women undergoing ovulation induction for assisted reproduction treatment--recombinant HCG versus urinary HCG. The European Recombinant Human Chorionic Gonadotrophin Study Group. Hum Reprod. 2000;15:1446–51.

  98. van de Lagemaat R, Timmers CM, Kelder J, van Koppen C, Mosselman S, Hanssen RG. Induction of ovulation by a potent, orally active, low molecular weight agonist (Org 43553) of the luteinizing hormone receptor. Hum Reprod. 2009;24:640–8.

    Article  PubMed  CAS  Google Scholar 

  99. Heitman LH, Oosterom J, Bonger KM, Timmers CM, Wiegerinck PH, Ijzerman AP. [3H]Org 43553, the first low-molecular-weight agonistic and allosteric radioligand for the human luteinizing hormone receptor. Mol Pharmacol. 2008;73:518–24.

    Article  PubMed  CAS  Google Scholar 

  100. Foresta C, Bettella A, Garolla A, Ambrosini G, Ferlin A. Treatment of male idiopathic infertility with recombinant human follicle-stimulating hormone: a prospective, controlled, randomized clinical study. Fertil Steril. 2005;84:654–61.

    Article  PubMed  CAS  Google Scholar 

  101. Foresta C, Selice R, Garolla A, Ferlin A. Follicle-stimulating hormone treatment of male infertility. Curr Opin Urol. 2008;18:602–7.

    Article  PubMed  Google Scholar 

  102. Foresta C, Selice R, Ferlin A, Garolla A. Recombinant FSH in the treatment of oligozoospermia. Expert Opin Biol Ther. 2009;9:659–66.

    Article  PubMed  CAS  Google Scholar 

  103. Foresta C, Selice R, Ferlin A, Arslan P, Garolla A. Hormonal treatment of male infertility: FSH. Reprod Biomed Online. 2007;15:666–72.

    Article  PubMed  CAS  Google Scholar 

  104. Levallet J, Pakarinen P, Huhtaniemi IT. Follicle-stimulating hormone ligand and receptor mutations, and gonadal dysfunction. Arch Med Res. 1999;30:486–94.

    Article  PubMed  CAS  Google Scholar 

  105. Matthews CH, Borgato S, Beck-Peccoz P, Adams M, Tone Y, Gambino G, et al. Primary amenorrhoea and infertility due to a mutation in the beta-subunit of follicle-stimulating hormone. Nat Genet. 1993;5:83–6.

    Article  PubMed  CAS  Google Scholar 

  106. Zirkin BR, Awoniyi C, Griswold MD, Russell LD, Sharpe R. Is FSH required for adult spermatogenesis? J Androl. 1994;15:273–6.

    PubMed  CAS  Google Scholar 

  107. Tapanainen JS, Aittomäki K, Min J, Vaskivuo T, Huhtaniemi IT. Men homozygous for an inactivating mutation of the follicle-stimulating hormone (FSH) receptor gene present variable suppression of spermatogenesis and fertility. Nat Gen. 1997;15:205.

    Article  CAS  Google Scholar 

  108. Matthews C, Chatterjee VK. Isolated deficiency of follicle-stimulating hormone re-revisited. N Engl J Med. 1997;337:642.

    Article  PubMed  CAS  Google Scholar 

  109. Layman LC, Lee E-J, Peak DB, Namnoum AB, Vu KV, van Lingen BL, et al. Delayed puberty and hypogonadism caused by mutations in the follicle-stimulating hormone β-subunit gene. N Engl J Med. 1997;337:607–11.

    Article  PubMed  CAS  Google Scholar 

  110. Simoni M, Gromoll J, Hoppner W, Kamischke A, Krafft T, Stahle D, et al. Mutational analysis of the follicle-stimulating hormone (FSH) receptor in normal and infertile men: identification and characterization of two discrete FSH receptor isoforms. J Clin Endocrinol Metab. 1999;84:751–5.

    Article  PubMed  CAS  Google Scholar 

  111. Hizaki H, Segi E, Sugimoto Y, Hirose M, Saji T, Ushikubi F, et al. Abortive expansion of the cumulus and impaired fertility in mice lacking the prostaglandin E receptor subtype EP(2). Proc Natl Acad Sci USA. 1999;96:10501–6.

    Article  PubMed  CAS  Google Scholar 

  112. Abel MH, Wootton AN, Wilkins V, Huhtaniemi I, Knight PG, Charlton HM. The effect of a null mutation in the follicle-stimulating hormone receptor gene on mouse reproduction. Endocrinology. 2000;141:1795–803.

    Article  PubMed  CAS  Google Scholar 

  113. Krishnamurthy H, Babu PS, Morales CR, Sairam MR. Delay in sexual maturity of the follicle-stimulating hormone receptor knockout male mouse. Biol Reprod. 2001;65:522–31.

    Article  PubMed  CAS  Google Scholar 

  114. Danilovich N, Roy I, Sairam MR. Ovarian pathology and high incidence of sex cord tumors in follitropin receptor knockout (FORKO) mice. Endocrinology. 2001;142:3673–84.

    Article  PubMed  CAS  Google Scholar 

  115. Kumar TR, Varani S, Wreford NG, Telfer NM, de Kretser DM, Matzuk MM. Male reproductive phenotypes in double mutant mice lacking both FSHbeta and activin receptor IIA. Endocrinology. 2001;142:3512–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Arey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arey, B.J., López, F.J. Are circulating gonadotropin isoforms naturally occurring biased agonists? Basic and therapeutic implications. Rev Endocr Metab Disord 12, 275–288 (2011). https://doi.org/10.1007/s11154-011-9188-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-011-9188-y

Keywords

Navigation