Skip to main content
Log in

Different properties of P2X7 receptor in hippocampal and cortical astrocytes

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

P2X7 receptor is a ligand-gated ion channel, which can induce the opening of large membrane pores. Here, we provide evidence that the receptor induces pore formation in astrocytes cultured from cortex, but not from the hippocampus. Furthermore, P2X7 receptor activation promptly induces p38 mitogen-activated protein kinase (MAPK) phosphorylation in cortical but not in hippocampal astrocytes. Given the role of p38 MAPK activation in pore opening, these data suggest that defective coupling of the receptor to the enzyme could occur in hippocampal cultures. The different capabilities of the receptor to open membrane pores cause relevant functional consequences. Upon pore formation, caspase-1 is activated and pro-IL1-β is cleaved and released extracellularly. The receptor stimulation does not result in interleukin-1beta secretion from hippocampal astrocytes, although the pro-cytokine is present in the cytosol of lipopolysaccharide-primed cultures. These results open the possibility that activation of P2X7 receptors differently influences the neuroinflammatory processes in distinct brain regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25:5071–5082

    Article  PubMed  CAS  Google Scholar 

  2. Pelegrin P, Surprenant A (2007) Pannexin-1 couples to maitotoxin- and nigericin-induced interleukin-1beta release through a dye uptake-independent pathway. J Biol Chem 282:2386–2394

    Article  PubMed  CAS  Google Scholar 

  3. Locovei S, Scemes E, Qiu F, Spray DC, Dahl G (2007) Pannexin1 is part of the pore forming unit of the P2X(7) receptor death complex. FEBS Lett 581:483–488

    Article  PubMed  CAS  Google Scholar 

  4. Chen L, Brosnan CF (2006) Regulation of immune response by P2X7 receptor. Crit Rev Immunol 26:499–513

    PubMed  CAS  Google Scholar 

  5. Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272:735–738

    Article  PubMed  CAS  Google Scholar 

  6. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    PubMed  CAS  Google Scholar 

  7. Smart ML et al (2003) P2X7 receptor cell surface expression and cytolytic pore formation are regulated by a distal C-terminal region. J Biol Chem 278:8853–8860

    Article  PubMed  CAS  Google Scholar 

  8. Cheewatrakoolpong B, Gilchrest H, Anthes JC, Greenfeder S (2005) Identification and characterization of splice variants of the human P2X7 ATP channel. Biochem Biophys Res Commun 332:17–27

    Article  PubMed  CAS  Google Scholar 

  9. Duan S, Neary JT (2006) P2X(7) receptors: properties and relevance to CNS function. Glia 54:738–746

    Article  PubMed  Google Scholar 

  10. Verderio C, Matteoli M (2001) ATP mediates calcium signaling between astrocytes and microglial cells: modulation by IFN-gamma. J Immunol 166:6383–6391

    PubMed  CAS  Google Scholar 

  11. Neary JT, Kang Y, You-Fang S (2005) Cell cycle regulation of astrocytes by extracellular nucleotides and fibroblast growth factor-2. Purinergic Signal 1(4):329–336 doi:10.1007/s11302-005-8075-y

    Article  PubMed  CAS  Google Scholar 

  12. Fumagalli M et al (2003) Nucleotide-mediated calcium signaling in rat cortical astrocytes: role of P2X and P2Y receptors. Glia 43:218–230

    Article  PubMed  Google Scholar 

  13. Ferrari D et al (1997) ATP-mediated cytotoxicity in microglial cells. Neuropharmacology 36:1295–1301

    Article  PubMed  CAS  Google Scholar 

  14. Budagian V et al (2003) Signaling through P2X7 receptor in human T cells involves p56lck, MAP kinases, and transcription factors AP-1 and NF-kappa B. J Biol Chem 278:1549–1560

    Article  PubMed  CAS  Google Scholar 

  15. Panenka W et al (2001) P2X7-like receptor activation in astrocytes increases chemokine monocyte chemoattractant protein-1 expression via mitogen-activated protein kinase. J Neurosci 21:7135–7142

    PubMed  CAS  Google Scholar 

  16. Gendron FP et al (2003) Mechanisms of P2X7 receptor-mediated ERK1/2 phosphorylation in human astrocytoma cells. Am J Physiol Cell Physiol 284:C571–C581

    PubMed  CAS  Google Scholar 

  17. Suzuki T et al (2004) Production and release of neuroprotective tumor necrosis factor by P2X7 receptor-activated microglia. J Neurosci 24:1–7

    Article  PubMed  CAS  Google Scholar 

  18. Ballerini P et al (1996) Rat astroglial P2Z (P2X7) receptors regulate intracellular calcium and purine release. Neuroreport 7:2533–2537

    Article  PubMed  CAS  Google Scholar 

  19. Sperlagh B, Vizi ES, Wirkner K, Illes P (2006) P2X7 receptors in the nervous system. Prog Neurobiol 78:327–346

    Article  PubMed  CAS  Google Scholar 

  20. Fellin T, Pozzan T, Carmignoto G (2006) Purinergic receptors mediate two distinct glutamate release pathways in hippocampal astrocytes. J Biol Chem 281:4274–4284

    Article  PubMed  CAS  Google Scholar 

  21. Jabs R et al (2007) Lack of P2X receptor mediated currents in astrocytes and GluR type glial cells of the hippocampal CA1 region. Glia 55:1648–1655

    Article  PubMed  Google Scholar 

  22. Nolte C et al (2001) GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33:72–86

    Article  PubMed  CAS  Google Scholar 

  23. Matthias K et al (2003) Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus. J Neurosci 23:1750–1758

    PubMed  CAS  Google Scholar 

  24. Steinhauser C, Berger T, Frotscher M, Kettenmann H (1992) Heterogeneity in the membrane current pattern of identified glial cells in the hippocampal slice. Eur J Neurosci 4:472–484

    Article  PubMed  Google Scholar 

  25. Zhou M, Kimelberg HK (2001) Freshly isolated hippocampal CA1 astrocytes comprise two populations differing in glutamate transporter and AMPA receptor expression. J Neurosci 21:7901–7908

    PubMed  CAS  Google Scholar 

  26. Calegari F et al (1999) A regulated secretory pathway in cultured hippocampal astrocytes. J Biol Chem 274:22539–22547

    Article  PubMed  CAS  Google Scholar 

  27. Virginio C, Church D, North RA, Surprenant A (1997) Effects of divalent cations, protons and calmidazolium at the rat P2X7 receptor. Neuropharmacology 36:1285–1294

    Article  PubMed  CAS  Google Scholar 

  28. Falzoni S et al (1995) The purinergic P2Z receptor of human macrophage cells. Characterization and possible physiological role. J Clin Invest 95:1207–1216

    Article  PubMed  CAS  Google Scholar 

  29. Virginio C, MacKenzie A, North RA, Surprenant A (1999) Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 receptor. J Physiol 519(Pt 2):335–346

    Article  PubMed  CAS  Google Scholar 

  30. Shestopalov VI, Panchin Y (2008) Pannexins and gap junction protein diversity. Cell Mol Life Sci 65:376–394

    Article  PubMed  CAS  Google Scholar 

  31. Lai CP et al (2007) Tumor-suppressive effects of pannexin-1 in C6 glioma cells. Cancer Res 67:1545–1554

    Article  PubMed  CAS  Google Scholar 

  32. Dvoriantchikova G, Ivanov D, Panchin Y, Shestopalov VI (2006) Expression of pannexin family of proteins in the retina. FEBS Lett 580:2178–2182

    Article  PubMed  CAS  Google Scholar 

  33. Huang Y, Grinspan JB, Abrams CK, Scherer SS (2007) Pannexin1 is expressed by neurons and glia but does not form functional gap junctions. Glia 55:46–56

    Article  PubMed  Google Scholar 

  34. Bianco F et al (2005) Astrocyte-derived ATP induces vesicle shedding and IL-1 beta release from microglia. J Immunol 174:7268–7277

    PubMed  CAS  Google Scholar 

  35. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426

    Article  PubMed  CAS  Google Scholar 

  36. Coco S et al (2003) Storage and release of ATP from astrocytes in culture. J Biol Chem 278:1354–1362

    Article  PubMed  CAS  Google Scholar 

  37. Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26:523–530

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Roberto Mele and Marta Fumagalli for their help in some experiments. This work was supported by FISM (2007/R35) to CV and CARIPLO 20060948 to MM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Verderio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianco, F., Colombo, A., Saglietti, L. et al. Different properties of P2X7 receptor in hippocampal and cortical astrocytes. Purinergic Signalling 5, 233–240 (2009). https://doi.org/10.1007/s11302-009-9137-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-009-9137-3

Keywords

Navigation