Skip to main content

Advertisement

Log in

RanBPM, a Scaffolding Protein in the Immune and Nervous Systems

  • Invited Review
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

We review the literature for Ran Binding Protein in the Microtubule-Organizing Center (RanBPM; RanBP9), a 90-kDa protein that possesses many characteristics of a scaffolding protein, including protein-interaction motifs, a cytoskeletal-binding domain, and multiple canonical docking sites for signaling intermediates. We focus on studies that have examined functional interactions between RanBPM and other proteins. These studies suggest that RanBPM provides a platform for the interaction of a variety of signaling proteins, including cell surface receptors, nuclear receptors, nuclear transcription factors, and cytosolic kinases. These studies indicate that RanBPM acts as a scaffolding protein and is important in regulating cellular function in both the immune system and the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Beddow AL, Richards SA, Orem NR, Macara IG (1995) The Ran/TC4 GTPase-binding domain: identification by expression cloning and characterization of a conserved sequence motif. Proc Natl Acad Sci USA 92:3328–3332

    Article  PubMed  CAS  Google Scholar 

  • Brannetti B, Helmer-Citterich M (2003) iSPOT: a web tool to infer the interaction specificity of families of protein modules. Nucleic Acids Res 31:3709–3711

    Article  PubMed  CAS  Google Scholar 

  • Brannetti B, Zanzoni A, Montecchi-Palazzi L, Cesareni G, Helmer-Citterich M (2001) iSPOT: a web tool for the analysis and recognition of protein domain specificity. Compar Funct Genom 2:314–318

    Article  CAS  Google Scholar 

  • Brunkhorst A, Karlen M, Shi J, Mikolajczyk M, Nelson MA, Metsis M, Hermanson O (2005) A specific role for the TFIID subunit TAF4 and RanBPM in neural progenitor differentiation. Mol Cell Neurosci 29:250–258

    Article  PubMed  CAS  Google Scholar 

  • Cheng L, Lemmon S, Lemmon V (2005) RanBPM is an L1-interacting protein that regulates L1-mediated mitogen-activated protein kinase activation. J Neurochem 94:1102–1110

    Article  PubMed  CAS  Google Scholar 

  • Denti S, Sirri A, Cheli A, Rogge L, Innamorati G, Putignano S, Fabbri M, Pardi R, Bianchi E (2004) RanBPM is a phosphoprotein that associates with the plasma membrane and interacts with the integrin LFA-1. J Biol Chem 279:13027–13034

    Article  PubMed  CAS  Google Scholar 

  • Emberley ED, Gietz RD, Campbell JD, HayGlass KT, Murphy LC, Watson PH (2002) RanBPM interacts with psoriasin in vitro and their expression correlates with specific clinical features in vivo in breast cancer. BMC Cancer 2:28

    Article  PubMed  Google Scholar 

  • Emes RD, Ponting CP (2001) A new sequence motif linking lissencephaly, Treacher Collins and oral–facial–digital type 1 syndromes, microtubule dynamics and cell migration. Hum Mol Genet 10:2813–2820

    Article  PubMed  CAS  Google Scholar 

  • Gerlitz G, Darhin E, Giorgio G, Franco B, Reiner O (2005) Novel functional features of the Lis-H domain: role in protein dimerization, half-life and cellular localization. Cell Cycle 4:1632–1640

    PubMed  CAS  Google Scholar 

  • Giblin PA, Lemieux RM (2006) LFA-1 as a key regulator of immune function: approaches toward the development of LFA-1-based therapeutics. Curr Pharm Des 12:2771–2795

    Article  PubMed  CAS  Google Scholar 

  • Hilton DJ, Richardson RT, Alexander WS, Viney EM, Willson TA, Sprigg NS, Starr R, Nicholson SE, Metcalf D, Nicola NA (1998) Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc Natl Acad Sci USA 95:114–119

    Article  PubMed  CAS  Google Scholar 

  • Jang YJ, Ji JH, Ahn JH, Hoe KL, Won M, Im DS, Chae SK, Song S, Yoo HS (2004) Polo-box motif targets a centrosome regulator, RanGTPase. Biochem Biophys Res Commun 325:257–264

    Article  PubMed  CAS  Google Scholar 

  • Kay BK, Williamson MP, Sudol M (2000) The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J 14:231–241

    PubMed  CAS  Google Scholar 

  • Kramer S, Ozaki T, Miyazaki K, Kato C, Hanamoto T, Nakagawara A (2005) Protein stability and function of p73 are modulated by a physical interaction with RanBPM in mammalian cultured cells. Oncogene 24:938–944

    Article  PubMed  CAS  Google Scholar 

  • Letunic I, Goodstadt L, Dickens NJ, Doerks T, Schultz J, Mott R, Ciccarelli F, Copley RR, Ponting CP, Bork P (2002) Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Res 30:242–244

    Article  PubMed  CAS  Google Scholar 

  • Macias MJ, Wiesner S, Sudol M (2002) WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. FEBS Lett 513:30–37

    Article  PubMed  CAS  Google Scholar 

  • Mateja A, Cierpicki T, Paduch M, Derewenda ZS, Otlewski J (2006) The dimerization mechanism of LIS1 and its implication for proteins containing the LisH motif. J Mol Biol 357:621–631

    Article  PubMed  CAS  Google Scholar 

  • Menon RP, Gibson TJ, Pastore A (2004) The C terminus of fragile X mental retardation protein interacts with the multi-domain Ran-binding protein in the microtubule-organising centre. J Mol Biol 343:43–53

    Article  PubMed  CAS  Google Scholar 

  • Murrin LC, Thomas MP (2007) Molecular, cellular and physiological mechanisms of psychiatric disorders. In: Gendelman HE, Ikezu T (eds) The neuroimmune system in psychiatric disorders. Springer, Berlin (in press)

  • Nakamura M, Masuda H, Horii J, Kuma K, Yokoyama N, Ohba T, Nishitani H, Miyata T, Tanaka M, Nishimoto T (1998) When overexpressed, a novel centrosomal protein, RanBPM, causes ectopic microtubule nucleation similar to γ-tubulin. J Cell Biol 143:1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Nishitani H, Hirose E, Uchimura Y, Nakamura M, Umeda M, Nishii K, Mori N, Nishimoto T (2001) Full-sized RanBPM cDNA encodes a protein possessing a long stretch of proline and glutamine within the N-terminal region, comprising a large protein complex. Gene 272:25–33

    Article  PubMed  CAS  Google Scholar 

  • Rao MA, Cheng H, Quayle AN, Nishitani H, Nelson CC, Rennie PS (2002) RanBPM, a nuclear protein that interacts with and regulates transcriptional activity of androgen receptor and glucocorticoid receptor. J Biol Chem 277:48020–48027

    Article  PubMed  CAS  Google Scholar 

  • Rexach M, Blobel G (1995) Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 83:683–692

    Article  PubMed  CAS  Google Scholar 

  • Sattler M, Salgia R (2007) c-Met and hepatocyte growth factor: potential as novel targets in cancer therapy. Curr Oncol Rep 9:102–108

    Article  PubMed  Google Scholar 

  • Talbot JN, Toews ML, Bylund DB, Murrin LC (2003) Mu opioid receptor-stimulated ERK activation in HEK293 cells is inhibited by the overexpression of RanBPM. Soc Neurosci Abs 28:802.5

    Google Scholar 

  • Talbot JN, Toews ML, Murrin LC (2004) The effects of RanBPM on agonist-mediated endocytosis of the mu opioid receptor. FASEB J 18:A586

    Google Scholar 

  • Talbot JN, Toews ML, Murrin LC (2005) Regulation of mu opioid receptor internalization by the accessory protein RanBPM. FASEB J 19:A1098

    Google Scholar 

  • Tang X, Zhang J, Cai Y, Miao S, Zong S, Koide SS, Wang L (2004) Sperm membrane protein (hSMP-1) and RanBPM complex in the microtubule-organizing centre. J Mol Med 82:383–388

    Article  PubMed  CAS  Google Scholar 

  • Togashi H, Schmidt EF, Strittmatter SM (2006) RanBPM contributes to Semaphorin3A signaling through plexin-A receptors. J Neurosci 26:4961–4969

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Li Z, Messing EM, Wu G (2002a) Activation of Ras/Erk pathway by a novel MET-interacting protein RanBPM. J Biol Chem 277:36216–36222

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Marion SE, Li X, Duttenhofer I, Debatin K, Hug H (2002b) HIPK2 associates with RanBPM. Biochem Biophys Res Commun 297:148–153

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Li Z, Schoen SR, Messing EM, Wu G (2004) A novel MET-interacting protein shares high sequence similarity with RanBPM, but fails to stimulate MET-induced Ras/Erk signaling. Biochem Biophys Res Commun 313:320–326

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Sun X, Kaczmarek E, Dwyer KM, Bianchi E, Usheva A, Robson SC (2006) RanBPM associates with CD39 and modulates ecto-nucleotidase activity. Biochem J 396:23–30

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama N, Hayashi N, Seki T, Pante N, Ohba T, Nichii K, Kuma K, Hayashida T, Miyata T, Aebi U, Fukui M, Nishimoto T (1995) A giant nucleopore protein that binds Ran/TC4. Nature 376:184–188

    Article  PubMed  CAS  Google Scholar 

  • Zou Y, Lim S, Lee K, Deng X, Friedman E (2003) Serine/threonine kinase Mirk/Dyrk1B is an inhibitor of epithelial cell migration and is negatively regulated by the Met adaptor Ran-binding protein M. J Biol Chem 278:49573–49581

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Charles Murrin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murrin, L.C., Talbot, J.N. RanBPM, a Scaffolding Protein in the Immune and Nervous Systems. Jrnl Neuroimmune Pharm 2, 290–295 (2007). https://doi.org/10.1007/s11481-007-9079-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-007-9079-x

Keywords

Navigation