Skip to main content

Advertisement

Log in

Hypertension, Cardiac Hypertrophy, and Impaired Vascular Relaxation Induced by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin are Associated with Increased Superoxide

  • Original Research
  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

The mechanisms by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increases the incidence of human cardiovascular disease are not known. We investigated the degree to which cardiovascular disease develops in mice following subchronic TCDD exposure. Adult male C57BL/6 mice were dosed with vehicle or 300 ng TCDD/kg by oral gavage three times per week for 60 days. Blood pressure was recorded by radiotelemetry and aortic endothelial function was assessed by acetylcholine-induced vasorelaxation. Mean arterial pressure of TCDD-exposed mice was increased significantly by day 4 and between days 7–10, 25–35, and 45–60 with two periods of normalization on days 11–24 and days 36–39. Consistent with a prolonged period of systemic hypertension, heart weight was increased and was associated with concentric left ventricular hypertrophy. Significant increases in superoxide production also were observed in the kidney, heart, and aorta of TCDD-exposed mice. Furthermore, increased aortic superoxide resulted in endothelial dysfunction as demonstrated by significant impairment of acetylcholine-induced vasorelaxation in TCDD-exposed mice, which was restored by tempol, a superoxide dismutase (SOD) mimetic. Our model is the first to definitely demonstrate that sustained AhR activation by TCDD increases blood pressure and induces cardiac hypertrophy, which may be mediated, in part, by increased superoxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. ATSDR. (1998). Toxicological profile for chlorinated dibenzo-p-dioxins. Atlanta: Agency for Toxic Substance and Disease Registry.

    Google Scholar 

  2. Swanson, H. I., & Bradfield, C. A. (1993). The AH-receptor: Genetics, structure and function. Pharmacogenetics, 3, 213–230. doi:10.1097/00008571-199310000-00001.

    Article  PubMed  CAS  Google Scholar 

  3. Fernandez-Salguero, P. M., Hilbert, D. M., Rudikoff, S., Ward, J. M., & Gonzalez, F. J. (1996). Aryl-hydrocarbon receptor-deficient mice are resistant to 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced toxicity. Toxicology and Applied Pharmacology, 140, 173–179. doi:10.1006/taap.1996.0210.

    Article  PubMed  CAS  Google Scholar 

  4. Mimura, J., Yamashita, K., Nakamura, K., Morita, M., Takagi, T. N., Nakao, K., et al. (1997). Loss of teratogenic response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice lacking the Ah (dioxin) receptor. Genes to Cells, 2, 645–654. doi:10.1046/j.1365-2443.1997.1490345.x.

    Article  PubMed  CAS  Google Scholar 

  5. Peters, J. M., Narotsky, M. G., Elizondo, G., Fernandez-Salguero, P. M., Gonzalez, F. J., & Abbott, B. D. (1999). Amelioration of TCDD-induced teratogenesis in aryl hydrocarbon receptor (AhR)-null mice. Toxicological Sciences, 47, 86–92. doi:10.1093/toxsci/47.1.86.

    Article  PubMed  CAS  Google Scholar 

  6. Kim, J. S., Lim, H. S., Cho, S. I., Cheong, H. K., & Lim, M. K. (2003). Impact of Agent Orange exposure among Korean Vietnam veterans. Industrial Health, 41, 149–157. doi:10.2486/indhealth.41.149.

    Article  PubMed  Google Scholar 

  7. Kang, H. K., Dalager, N. A., Needham, L. L., Patterson, D. G., Jr., Lees, P. S., Yates, K., et al. (2006). Health status of Army Chemical Corps Vietnam veterans who sprayed defoliant in Vietnam. American Journal of Industrial Medicine, 49, 875–884. doi:10.1002/ajim.20385.

    Article  PubMed  CAS  Google Scholar 

  8. Dalton, T. P., Kerzee, J. K., Wang, B., Miller, M., Dieter, M. Z., Lorenz, J. N., et al. (2001). Dioxin exposure is an environmental risk factor for ischemic heart disease. Cardiovascular Toxicology, 1, 285–298. doi:10.1385/CT:1:4:285.

    Article  PubMed  CAS  Google Scholar 

  9. Jokinen, M. P., Walker, N. J., Brix, A. E., Sells, D. M., Haseman, J. K., & Nyska, A. (2003). Increase in cardiovascular pathology in female Sprague-Dawley rats following chronic treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin and 3,3′,4,4′,5-pentachlorobiphenyl. Cardiovascular Toxicology, 3, 299–310. doi:10.1385/CT:3:4:299.

    Article  PubMed  CAS  Google Scholar 

  10. Brunnberg, S., Andersson, P., Lindstam, M., Paulson, I., Poellinger, L., & Hanberg, A. (2006). The constitutively active Ah receptor (CA-Ahr) mouse as a potential model for dioxin exposure-effects in vital organs. Toxicology, 224, 191–201. doi:10.1016/j.tox.2006.04.045.

    Article  PubMed  CAS  Google Scholar 

  11. Touyz, R. M. (2004). Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: What is the clinical significance? Hypertension, 44, 248–252. doi:10.1161/01.HYP.0000138070.47616.9d.

    Article  PubMed  CAS  Google Scholar 

  12. Slezak, B. P., Hatch, G. E., DeVito, M. J., Diliberto, J. J., Slade, R., Crissman, K., et al. (2000). Oxidative stress in female B6C3F1 mice following acute and subchronic exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicological Sciences, 54, 390–398. doi:10.1093/toxsci/54.2.390.

    Article  PubMed  CAS  Google Scholar 

  13. Huwe, J. K., & Smith, D. J. (2005). Laboratory and on-farm studies on the bioaccumulation and elimination of dioxins from a contaminated mineral supplement fed to dairy cows. Journal of Agricultural and Food Chemistry, 53, 2362–2370. doi:10.1021/jf0480997.

    Article  PubMed  CAS  Google Scholar 

  14. Simon, P. (2003). Q-Gene: Processing quantitative real-time RT-PCR data. Bioinformatics (Oxford, England), 19, 1439–1440. doi:10.1093/bioinformatics/btg157.

    Article  CAS  Google Scholar 

  15. Lund, A. K., Peterson, S. L., Timmins, G. S., & Walker, M. K. (2005). Endothelin-1-mediated increase in reactive oxygen species and NADPH Oxidase activity in hearts of aryl hydrocarbon receptor (AhR) null mice. Toxicological Sciences, 88, 265–273. doi:10.1093/toxsci/kfi284.

    Article  PubMed  CAS  Google Scholar 

  16. Dikalov, S., Griendling, K. K., & Harrison, D. G. (2007). Measurement of reactive oxygen species in cardiovascular studies. Hypertension, 49, 717–727. doi:10.1161/01.HYP.0000258594.87211.6b.

    Article  PubMed  CAS  Google Scholar 

  17. Diliberto, J. J., DeVito, M. J., Ross, D. G., & Birnbaum, L. S. (2001). Subchronic exposure of [3H]-2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in female B6C3F1 mice: Relationship of steady-state levels to disposition and metabolism. Toxicological Sciences, 61, 241–255. doi:10.1093/toxsci/61.2.241.

    Article  PubMed  CAS  Google Scholar 

  18. Levick, J. R. (2003). Introduction to cardiovascular physiology. London: Hodder Arnold.

    Google Scholar 

  19. Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., et al. (1997). An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochemical and Biophysical Research Communications, 236, 313–322. doi:10.1006/bbrc.1997.6943.

    Article  PubMed  CAS  Google Scholar 

  20. Venugopal, R., & Jaiswal, A. K. (1996). Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Proceedings of the National Academy of Sciences of the United States of America, 93, 14960–14965. doi:10.1073/pnas.93.25.14960.

    Article  PubMed  CAS  Google Scholar 

  21. Muscoli, C., Cuzzocrea, S., Riley, D. P., Zweier, J. L., Thiemermann, C., Wang, Z. Q., et al. (2003). On the selectivity of superoxide dismutase mimetics and its importance in pharmacological studies. British Journal of Pharmacology, 140, 445–460. doi:10.1038/sj.bjp.0705430.

    Article  PubMed  CAS  Google Scholar 

  22. Tsukahara, C., Sugiyama, F., Paigen, B., Kunita, S., & Yagami, K. (2004). Blood pressure in 15 inbred mouse strains and its lack of relation with obesity and insulin resistance in the progeny of an NZO/HILtJ x C3H/HeJ intercross. Mammalian Genome, 15, 943–950. doi:10.1007/s00335-004-2411-3.

    Article  PubMed  CAS  Google Scholar 

  23. Gross, V., & Luft, F. C. (2003). Exercising restraint in measuring blood pressure in conscious mice. Hypertension, 41, 879–881. doi:10.1161/01.HYP.0000060866.69947.D1.

    Article  PubMed  CAS  Google Scholar 

  24. Kario, K., Matsuo, T., Kobayashi, H., Imiya, M., Matsuo, M., & Shimada, K. (1996). Nocturnal fall of blood pressure and silent cerebrovascular damage in elderly hypertensive patients. Advanced silent cerebrovascular damage in extreme dippers. Hypertension, 27, 130–135.

    PubMed  CAS  Google Scholar 

  25. Shimada, K., Kawamoto, A., Matsubayashi, K., Nishinaga, M., Kimura, S., & Ozawa, T. (1992). Diurnal blood pressure variations and silent cerebrovascular damage in elderly patients with hypertension. Journal of Hypertension, 10, 875–878.

    PubMed  CAS  Google Scholar 

  26. Huang, P. L., Huang, Z., Mashimo, H., Bloch, K. D., Moskowitz, M. A., Bevan, J. A., et al. (1995). Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature, 377, 239–242. doi:10.1038/377239a0.

    Article  PubMed  CAS  Google Scholar 

  27. Pollock, D. M. (2005). Endothelin, angiotensin, and oxidative stress in hypertension. Hypertension, 45, 477–480. doi:10.1161/01.HYP.0000158262.11935.d0.

    Article  PubMed  CAS  Google Scholar 

  28. Bagchi, D., Balmoori, J., Bagchi, M., Ye, X., Williams, C. B., & Stohs, S. J. (2002). Comparative effects of TCDD, endrin, naphthalene and chromium (VI) on oxidative stress and tissue damage in the liver and brain tissues of mice. Toxicology, 175, 73–82. doi:10.1016/S0300-483X(02)00062-8.

    Article  PubMed  CAS  Google Scholar 

  29. Hassoun, E. A., Wilt, S. C., DeVito, M. J., Van, B. A., Alsharif, N. Z., Birnbaum, L. S., et al. (1998). Induction of oxidative stress in brain tissues of mice after subchronic exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicological Sciences, 42, 23–27.

    PubMed  CAS  Google Scholar 

  30. Hassoun, E. A., Li, F., Abushaban, A., & Stohs, S. J. (2000). The relative abilities of TCDD and its congeners to induce oxidative stress in the hepatic and brain tissues of rats after subchronic exposure. Toxicology, 145, 103–113. doi:10.1016/S0300-483X(99)00221-8.

    Article  PubMed  CAS  Google Scholar 

  31. Chen, H. L., Hsu, C. Y., Hung, D. Z., & Hu, M. L. (2006). Lipid peroxidation and antioxidant status in workers exposed to PCDD/Fs of metal recovery plants. The Science of the Total Environment, 372, 12–19. doi:10.1016/j.scitotenv.2006.06.008.

    Article  PubMed  CAS  Google Scholar 

  32. Alsharif, N. Z., & Hassoun, E. A. (2004). Protective effects of vitamin A and vitamin E succinate against 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced body wasting, hepatomegaly, thymic atrophy, production of reactive oxygen species and DNA damage in C57BL/6J mice. Basic & Clinical Pharmacology & Toxicology, 95, 131–138.

    CAS  Google Scholar 

  33. Slim, R., Toborek, M., Robertson, L. W., Lehmler, H. J., & Hennig, B. (2000). Cellular glutathione status modulates polychlorinated biphenyl-induced stress response and apoptosis in vascular endothelial cells. Toxicology and Applied Pharmacology, 166, 36–42. doi:10.1006/taap.2000.8944.

    Article  PubMed  CAS  Google Scholar 

  34. Dong, W., Teraoka, H., Yamazaki, K., Tsukiyama, S., Imani, S., Imagawa, T., et al. (2002). 2,3,7,8-Tetrachlorodibenzo-p-dioxin toxicity in the zebrafish embryo: Local circulation failure in the dorsal midbrain is associated with increased apoptosis. Toxicological Sciences, 69, 191–201. doi:10.1093/toxsci/69.1.191.

    Article  PubMed  CAS  Google Scholar 

  35. Pelclova, D., Prazny, M., Skrha, J., Fenclova, Z., Kalousova, M., Urban, P., et al. (2007). 2,3,7,8-TCDD exposure, endothelial dysfunction and impaired microvascular reactivity. Human and Experimental Toxicology, 26, 705–713. doi:10.1177/0960327107083971.

    Article  PubMed  CAS  Google Scholar 

  36. Hassoun, E. A., Al-Ghafri, M., & Abushaban, A. (2003). The role of antioxidant enzymes in TCDD-induced oxidative stress in various brain regions of rats after subchronic exposure. Free Radical Biology and Medicine, 35, 1028–1036. doi:10.1016/S0891-5849(03)00458-1.

    Article  PubMed  CAS  Google Scholar 

  37. Lim, J., DeWitt, J. C., Sanders, R. A., Watkins, J. B., III, & Henshel, D. S. (2007). Suppression of endogenous antioxidant enzymes by 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced oxidative stress in chicken liver during development. Archives of Environmental Contamination and Toxicology, 52, 590–595. doi:10.1007/s00244-006-0168-2.

    Article  PubMed  CAS  Google Scholar 

  38. Andreyev, A. Y., Kushnareva, Y. E., & Starkov, A. A. (2005). Mitochondrial metabolism of reactive oxygen species. Biochemistry. Biokhimiia, 70, 200–214. doi:10.1007/s10541-005-0102-7.

    PubMed  CAS  Google Scholar 

  39. Puddu, P., Puddu, G. M., Cravero, E., De, P. S., & Muscari, A. (2007). The putative role of mitochondrial dysfunction in hypertension. Clinical and Experimental Hypertension, 29, 427–434. doi:10.1080/10641960701613852.

    Article  PubMed  CAS  Google Scholar 

  40. Senft, A. P., Dalton, T. P., Nebert, D. W., Genter, M. B., Hutchinson, R. J., & Shertzer, H. G. (2002). Dioxin increases reactive oxygen production in mouse liver mitochondria. Toxicology and Applied Pharmacology, 178, 15–21. doi:10.1006/taap.2001.9314.

    Article  PubMed  CAS  Google Scholar 

  41. Genter, M. B., Clay, C. D., Dalton, T. P., Dong, H., Nebert, D. W., & Shertzer, H. G. (2006). Comparison of mouse hepatic mitochondrial versus microsomal cytochromes P450 following TCDD treatment. Biochemical and Biophysical Research Communications, 342, 1375–1381. doi:10.1016/j.bbrc.2006.02.121.

    Article  PubMed  CAS  Google Scholar 

  42. Verhaar, M. C., Westerweel, P. E., van Zonneveld, A. J., & Rabelink, T. J. (2004). Free radical production by dysfunctional eNOS. Heart (British Cardiac Society), 90, 494–495. doi:10.1136/hrt.2003.029405.

    CAS  Google Scholar 

  43. Moens, A. L., & Kass, D. A. (2006). Tetrahydrobiopterin and cardiovascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 2439–2444. doi:10.1161/01.ATV.0000243924.00970.cb.

    Article  PubMed  CAS  Google Scholar 

  44. Mitchell, B. M., Dorrance, A. M., & Webb, R. C. (2003). GTP cyclohydrolase 1 inhibition attenuates vasodilation and increases blood pressure in rats. American Journal of Physiology. Heart and Circulatory Physiology, 285, H2165–H2170.

    PubMed  CAS  Google Scholar 

  45. Mitchell, B. M., Dorrance, A. M., & Webb, R. C. (2003). GTP cyclohydrolase 1 downregulation contributes to glucocorticoid hypertension in rats. Hypertension, 41, 669–674. doi:10.1161/01.HYP.0000051889.62249.5D.

    Article  PubMed  CAS  Google Scholar 

  46. Landmesser, U., Dikalov, S., Price, S. R., McCann, L., Fukai, T., Holland, S. M., et al. (2003). Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. The Journal of Clinical Investigation, 111, 1201–1209.

    PubMed  CAS  Google Scholar 

  47. Andreasen, E. A., Mathew, L. K., & Tanguay, R. L. (2006). Regenerative growth is impacted by TCDD: Gene expression analysis reveals extracellular matrix modulation. Toxicological Sciences, 92, 254–269. doi:10.1093/toxsci/kfj118.

    Article  PubMed  CAS  Google Scholar 

  48. Carney, S. A., Chen, J., Burns, C. G., Xiong, K. M., Peterson, R. E., & Heideman, W. (2006). Aryl hydrocarbon receptor activation produces heart-specific transcriptional and toxic responses in developing zebrafish. Molecular Pharmacology, 70, 549–561. doi:10.1124/mol.106.025304.

    Article  PubMed  CAS  Google Scholar 

  49. Puntarulo, S., & Cederbaum, A. I. (1998). Production of reactive oxygen species by microsomes enriched in specific human cytochrome P450 enzymes. Free Radical Biology and Medicine, 24, 1324–1330. doi:10.1016/S0891-5849(97)00463-2.

    Article  PubMed  CAS  Google Scholar 

  50. Shertzer, H. G., Clay, C. D., Genter, M. B., Chames, M. C., Schneider, S. N., Oakley, G. G., et al. (2004). Uncoupling-mediated generation of reactive oxygen by halogenated aromatic hydrocarbons in mouse liver microsomes. Free Radical Biology and Medicine, 36, 618–631. doi:10.1016/j.freeradbiomed.2003.11.014.

    Article  PubMed  CAS  Google Scholar 

  51. Annas, A., & Brittebo, E. B. (1998). Localization of cytochrome P4501A1 and covalent binding of a mutagenic heterocyclic amine in blood vessel endothelia of rodents. Toxicology, 129, 145–156. doi:10.1016/S0300-483X(98)00087-0.

    Article  PubMed  CAS  Google Scholar 

  52. Teraoka, H., Dong, W., Tsujimoto, Y., Iwasa, H., Endoh, D., Ueno, N., et al. (2003). Induction of cytochrome P450 1A is required for circulation failure and edema by 2,3,7,8-tetrachlorodibenzo-p-dioxin in zebrafish. Biochemical and Biophysical Research Communications, 304, 223–228. doi:10.1016/S0006-291X(03)00576-X.

    Article  PubMed  CAS  Google Scholar 

  53. Kaplan, N. M. (2002). In N. M. Kaplan (Ed.), Kaplan’s clinical hypertension (pp. 56–135). Philadelphia: Lippincott Williams & Wilkins.

  54. Schiffrin, E. L. (2005). Vascular endothelin in hypertension. Vascular Pharmacology, 43, 19–29. doi:10.1016/j.vph.2005.03.004.

    Article  PubMed  CAS  Google Scholar 

  55. Diliberto, J. J., Burgin, D., & Birnbaum, L. S. (1999). Effects of CYP1A2 on disposition of 2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3,4,7,8-pentachlorodibenzofuran, and 2,2′,4,4′,5,5′-hexachlorobiphenyl in CYP1A2 knockout and parental (C57BL6N and 129/Sv) strains of mice. Toxicology and Applied Pharmacology, 159, 52–64. doi:10.1006/taap.1999.8720.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding National Institute of Health (ES12335 and HL078914 to MKW, ES12072 to UNM, 5T32HL007736 to UNM). Phillip Kopf is recognized as an American Foundation for Pharmaceutical Education Pre-Doctoral Fellow. The authors thank Drs. Nancy L. Kanagy and Matthew J. Campen for their valuable assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary K. Walker.

Additional information

The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the United States Department of Agriculture or the Agricultural Research Service of any product or service to the exclusion of others that may be suitable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopf, P.G., Huwe, J.K. & Walker, M.K. Hypertension, Cardiac Hypertrophy, and Impaired Vascular Relaxation Induced by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin are Associated with Increased Superoxide. Cardiovasc Toxicol 8, 181–193 (2008). https://doi.org/10.1007/s12012-008-9027-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-008-9027-x

Keywords

Navigation