Skip to main content
Log in

Calcium channel γ subunits: a functionally diverse protein family

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The calcium channel γ subunits comprise an eight-member protein family that share a common topology consisting of four transmembrane domains and intracellular N- and C-termini. Although the first γ subunit was identified as an auxiliary subunit of a voltage-dependent calcium channel, a review of phylogenetic, bioinformatic, and functional studies indicates that they are a functionally diverse protein family. A cluster containing γ1 and γ6 conforms to the original description of the protein family as they seem to act primarily as subunits of calcium channels expressed in muscle. Members of a second cluster (γ2, γ3, γ4, γ8) function as regulators of AMPA receptor localization and function in the brain and are collectively known as TARPs. The function of members of the third cluster (γ5, γ7) remains unclear. Our analysis shows that the members of each cluster contain conserved regulatory motifs that help to differentiate the groups. However, the physiological significance of these motifs in many cases remains to be demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. Published protein sequences of γ subunits and claudins were retrieved from NCBI protein database (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Protein). The sequence accession numbers and chromosomal locations of γ genes used in this article are available in Tables 1 and 2, respectively. The hydropathy plot and transmembrane topology of γs were taken directly from Chu et al. [13]. The transmembrane topology of claudins was predicted by TMHMM program v2.0 (http://www.cbs.dtu.dk/services/TMHMM/). Multiple sequence alignments were performed using ClustalW at default settings (http://www.ebi.ac.uk/clustalw/index.html). Putative functional sites in each sequence were identified in the online PROSITE database ([26], http://ca.expasy.org/prosite). Since no consensus motif of palmitoylation sites has been defined [48], in silico predictions based on experimental data in the literature were used to scan claudins and γs with the cut-off value of 2.6 [57].

Abbreviations

AMPA:

α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid

LVA/HVA :

low-/high-voltage activated

PDZ:

PSD-95/DLG/ZO-1

PKC:

protein kinase C

PKA/G:

cAMP/cGMP-dependent protein kinase

References

  1. Arikkath, J., & Campbell, K. P. (2003). Auxiliary subunits: Essential components of the voltage-gated calcium channel complex. Current Opinion in Neurobiology, 13, 298–307.

    Article  PubMed  CAS  Google Scholar 

  2. Arikkath, J., Chen, C. C., Ahern, C., Allamand, V., Flanagan, J. D., Coronado, R., Gregg, R. G., & Campbell, K. P. (2003). Gamma 1 subunit interactions within the skeletal muscle L-type voltage-gated calcium channels. Journal of Biological Chemistry, 278, 1212–1219.

    Article  PubMed  CAS  Google Scholar 

  3. Bahcall, O., Niemitz, E., Packer, A., & Vogan, K. (2005). Touching base. Nature Genetics, 37, 1167.

    Article  Google Scholar 

  4. Black, J. L. 3rd (2003). The voltage-gated calcium channel gamma subunits: A review of the literature. Journal of Bioenergetics and Biomembranes, 35, 649–660.

    Article  PubMed  CAS  Google Scholar 

  5. Blom, N., Sicheritz-Ponten, T., Gupta, R., Gammeltoft, S., & Brunak, S. (2004). Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics, 4, 1633–1649.

    Article  PubMed  CAS  Google Scholar 

  6. Burgess, D. L., Davis, C. F., Gefrides, L. A., & Noebels, J. L. (1999). Identification of three novel Ca(2+) channel gamma subunit genes reveals molecular diversification by tandem and chromosome duplication. Genome Research, 9, 1204–1213.

    Article  PubMed  CAS  Google Scholar 

  7. Burgess, D. L., Gefrides, L. A., Foreman, P. J., & Noebels, J. L. (2001). A Cluster of three novel Ca(2+) channel gamma subunit genes on chromosome 19q13.4: Evolution and expression profile of the gamma subunit gene family. Genomics, 71, 339–350.

    Article  PubMed  CAS  Google Scholar 

  8. Chen, L., Bao, S., Qiao, X., & Thompson, R. F. (1999). Impaired cerebellar synapse maturation in waggler, a mutant mouse with a disrupted neuronal calcium channel gamma subunit. Proceedings of the National Academy of Sciences of U S A, 96, 12132–12137.

    Article  CAS  Google Scholar 

  9. Chen, L., Chetkovich, D. M., Petralia, R. S., Sweeney, N. T., Kawasaki, Y., Wenthold, R. J., Bredt, D. S., & Nicoll, R. A. (2000). Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature, 408, 936–943.

    Article  PubMed  CAS  Google Scholar 

  10. Chetkovich, D. M., Chen, L., Stocker, T. J., Nicoll, R. A., & Bredt, D. S. (2002). Phosphorylation of the postsynaptic density-95 (PSD-95)/discs large/zona occludens-1 binding site of stargazin regulates binding to PSD-95 and synaptic targeting of AMPA receptors. Journal of Neuroscience, 22, 5791–5796.

    PubMed  CAS  Google Scholar 

  11. Chien, A. J., Gao, T., Perez-Reyes, E., & Hosey, M. M. (1998). Membrane targeting of L-type calcium channels. Role of palmitoylation in the subcellular localization of the beta2a subunit. Journal of Biological Chemistry, 273, 23590–23597.

    Article  PubMed  CAS  Google Scholar 

  12. Choi, J., Ko, J., Park, E., Lee, J. R., Yoon, J., Lim, S., & Kim, E. (2002). Phosphorylation of stargazin by protein kinase A regulates its interaction with PSD-95. Journal of Biological Chemistry, 277, 12359–12363.

    Article  PubMed  CAS  Google Scholar 

  13. Chu, P. J., Robertson, H. M., & Best, P. M. (2001). Calcium channel gamma subunits provide insights into the evolution of this gene family. Gene, 280, 37–48.

    Article  PubMed  CAS  Google Scholar 

  14. Cuadra, A. E., Kuo, S. H., Kawasaki, Y., Bredt, D. S., & Chetkovich, D. M. (2004). AMPA receptor synaptic targeting regulated by stargazin interactions with the Golgi-resident PDZ protein nPIST. Journal of Neuroscience, 24, 7491–7502.

    Article  PubMed  CAS  Google Scholar 

  15. Dolphin, A. C. (2003). Beta subunits of voltage-gated calcium channels. Journal of Bioenergetics and Biomembranes 35, 599–620.

    Article  PubMed  CAS  Google Scholar 

  16. Eberst, R., Dai, S., Klugbauer, N., & Hofmann, F. (1997). Identification and functional characterization of a calcium channel gamma subunit. Pflugers Archiv: European Journal of Physiology, 433, 633–637.

    Article  PubMed  CAS  Google Scholar 

  17. Ertel, E. A., Campbell, K. P., Harpold, M. M., Hofmann, F., Mori, Y., Perez-Reyes, E., Schwartz, A., Snutch, T. P., Tanabe, T., Birnbaumer, L., Tsien, R. W., & Catterall, W. A. (2000). Nomenclature of voltage-gated calcium channels. Neuron, 25, 533–535.

    Article  PubMed  CAS  Google Scholar 

  18. Flucher, B. E., Obermair, G. J., Tuluc, P., Schredelseker, J., Kern, G., & Grabner, M. (2005). The role of auxiliary dihydropyridine receptor subunits in muscle. Journal of Muscle Research and Cell Motility, 26, 1–6.

    Article  PubMed  CAS  Google Scholar 

  19. Freise, D., Held, B., Wissenbach, U., Pfeifer, A., Trost, C., Himmerkus, N., Schweig, U., Freichel, M., Biel, M., Hofmann, F., Hoth, M., & Flockerzi, V. (2000). Absence of the gamma subunit of the skeletal muscle dihydropyridine receptor increases L-type Ca2+ currents and alters channel inactivation properties. Journal of Biological Chemistry, 275, 14476–14481.

    Article  PubMed  CAS  Google Scholar 

  20. Fukaya, M., Yamazaki, M., Sakimura, K., & Watanabe, M. (2005). Spatial diversity in gene expression for VDCCgamma subunit family in developing and adult mouse brains. Neuroscience Research, 53, 376–383.

    Article  PubMed  CAS  Google Scholar 

  21. Green, P. J., Warre, R., Hayes, P. D., McNaughton, N. C., Medhurst, A. D., Pangalos, M., Duckworth, D. M., & Randall, A. D. (2001). Kinetic modification of the alpha(1I) subunit-mediated T-type Ca(2+) channel by a human neuronal Ca(2+) channel gamma subunit. Journal of Physiology, 533, 467–478.

    Article  PubMed  CAS  Google Scholar 

  22. Hansen, J. P., Chen, R. S., Larsen, J. K., Chu, P. J., Janes, D. M., Weis, K. E., & Best, P. M. (2004a). Calcium channel gamma6 subunits are unique modulators of low voltage-activated (Cav3.1) calcium current. Journal of Molecular and Cellular Cardiology, 37, 1147–1158.

    Article  PubMed  CAS  Google Scholar 

  23. Hansen J. P., Chen R.-S., Larsen J. K., Lin Z., Weis K., & Best P. M. (2004b). The N-terminal region of the calcium channel gamma6 subunit regulates Cav3.1 dependent calcium current in HEK 293 cells. Biophysical Journal, 86, 2217-Pos.

  24. Hashimoto, K., Fukaya, M., Qiao, X., Sakimura, K., Watanabe, M., & Kano, M. (1999). Impairment of AMPA receptor function in cerebellar granule cells of ataxic mutant mouse stargazer. Journal of Neuroscience, 19, 6027–6036.

    PubMed  CAS  Google Scholar 

  25. Held, B., Freise, D., Freichel, M., Hoth, M., & Flockerzi, V. (2002). Skeletal muscle L-type Ca(2+) current modulation in gamma1deficient and wildtype murine myotubes by the gamma1 subunit and cAMP. Journal of Physiology, 539, 459–468.

    Article  PubMed  CAS  Google Scholar 

  26. Hulo, N., Sigrist, C. J., Le Saux, V., Langendijk-Genevaux, P. S., Bordoli, L., Gattiker, A., De Castro, E., Bucher, P., & Bairoch, A. (2004). Recent improvements to the PROSITE database. Nucleic Acids Research, 32, D134–D137.

    Article  PubMed  CAS  Google Scholar 

  27. Jay, S. D., Ellis, S. B., McCue, A. F., Williams, M. E., Vedvick, T. S., Harpold, M. M., & Campbell, K. P. (1990). Primary structure of the gamma subunit of the DHP-sensitive calcium channel from skeletal muscle. Science, 248, 490–492.

    Article  PubMed  CAS  Google Scholar 

  28. Kang, M. G., Chen, C. C., Felix, R., Letts, V. A., Frankel, W. N., Mori, Y., & Campbell, K. P. (2001). Biochemical and biophysical evidence for gamma 2 subunit association with neuronal voltage-activated Ca2+ channels. Journal of Biological Chemistry, 276, 32917–32924.

    Article  PubMed  CAS  Google Scholar 

  29. Kang, M. G., & Campbell, K. P. (2003). Gamma subunit of voltage-activated calcium channels. Journal of Biological Chemistry, 278, 21315–21318.

    Article  PubMed  CAS  Google Scholar 

  30. Klugbauer, N., Dai, S., Specht, V., Lacinova, L, Marais, E., Bohn, G., & Hofmann, F. (2000). A family of gamma-like calcium channel subunits. The FEBS Journal, 470, 189–197.

    Article  CAS  Google Scholar 

  31. Klugbauer, N., Marais, E., & Hofmann, F. (2003). Calcium channel alpha2delta subunits: differential expression, function, and drug binding. Journal of Bioenergetics and Biomembranes, 35, 639–647.

    Article  PubMed  CAS  Google Scholar 

  32. Lacinova , L., & Klugbauer, N. (2004). Modulation of gating currents of the Ca(v)3.1 calcium channel by alpha 2 delta 2 and gamma 5 subunits. Archives of Biochemistry and Biophysics, 425, 207–213.

    Article  PubMed  CAS  Google Scholar 

  33. Larsen, J. K., Mitchell, J. W., & Best, P. M. (2002). Quantitative analysis of the expression and distribution of calcium channel alpha 1 subunit mRNA in the atria and ventricles of the rat heart. Journal of Molecular and Cellular Cardiology, 34, 519–532.

    Article  PubMed  CAS  Google Scholar 

  34. Letts, V. A., Felix, R., Biddlecome, G. H., Arikkath, J., Mahaffey, C. L., Valenzuela, A., Bartlett, F. S. 2nd, Mori, Y., Campbell, K. P., & Frankel, W. N. (1998). The mouse stargazer gene encodes a neuronal Ca2+-channel gamma subunit. Nature Genetics, 19, 340–347.

    Article  PubMed  CAS  Google Scholar 

  35. Letts, V. A., Mahaffey, C. L., Beyer, B., & Frankel, W. N. (2005). A targeted mutation in Cacng4 exacerbates spike-wave seizures in stargazer (Cacng2) mice. Proceedings of the National Academy of Sciences of U S A, 102, 2123–2128.

    Article  CAS  Google Scholar 

  36. Lin Z., Chen R.-S., Garcia T., Larsen J. K., & Best P. M. (2006). Identification of residues in TM1 of the gamma6 subunit critical for its inhibitory effect on Cav3.1 calcium current. Biophysical Journal, 90, 1906-Pos.

    Google Scholar 

  37. Moss, F. J., Viard, P., Davies, A., Bertaso, F., Page, K. M., Graham, A., Canti, C., Plumpton, M., Plumpton, C., Clare, J. J., & Dolphin, A. C. (2002). The novel product of a five-exon stargazin-related gene abolishes Ca(V)2.2 calcium channel expression. The EMBO Journal, 21, 1514–1523.

    Article  PubMed  CAS  Google Scholar 

  38. Neely, A., Wei, X., Olcese, R., Birnbaumer, L., & Stefani, E. (1993). Potentiation by the beta subunit of the ratio of the ionic current to the charge movement in the cardiac calcium channel. Science, 262, 575–578.

    Article  PubMed  CAS  Google Scholar 

  39. Noebels, J. L., Qiao, X., Bronson, R. T., Spencer, C., & Davisson, M. T. (1990). Stargazer: A new neurological mutant on chromosome 15 in the mouse with prolonged cortical seizures. Epilepsy Research 7, 129–135.

    Article  PubMed  CAS  Google Scholar 

  40. Osten, P., & Stern-Bach, Y. (2006). Learning from stargazin: The mouse, the phenotype and the unexpected. Current Opinion in Neurobiology, 16, 275–280.

    Article  PubMed  CAS  Google Scholar 

  41. Price, M. G., Davis, C. F., Deng, F., & Burgess, D. L. (2005). The alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate receptor trafficking regulator “stargazin” is related to the claudin family of proteins by Its ability to mediate cell–cell adhesion. Journal of Biological Chemistry, 280, 19711–19720.

    Article  PubMed  CAS  Google Scholar 

  42. Priel, A., Kolleker, A., Ayalon, G., Gillor, M., Osten, P., & Stern-Bach, Y. (2005). Stargazin reduces desensitization and slows deactivation of the AMPA-type glutamate receptors. Journal of Neuroscience, 25, 2682–2686.

    Article  PubMed  CAS  Google Scholar 

  43. Qiao, X., & Meng, H. (2003). Nonchannel functions of the calcium channel gamma subunit: insight from research on the stargazer mutant. Journal of Bioenergetics and Biomembranes, 35, 661–670.

    Article  PubMed  CAS  Google Scholar 

  44. Rouach, N., Byrd, K., Petralia, R. S., Elias, G. M., Adesnik, H., Tomita, S., Karimzadegan, S., Kealey, C., Bredt, D. S., & Nicoll R. A. (2005). TARP gamma-8 controls hippocampal AMPA receptor number, distribution and synaptic plasticity. Nature Neuroscience, 8, 1525–1533.

    Article  PubMed  CAS  Google Scholar 

  45. Rousset, M., Cens, T., Restituito, S., Barrere, C., Black, J. L. 3rd, McEnery, M. W., & Charnet, P. (2001). Functional roles of gamma2, gamma3 and gamma4, three new Ca2+ channel subunits, in P/Q-type Ca2+ channel expressed in Xenopus oocytes. Journal of Physiology, 532, 583–593.

    Article  PubMed  CAS  Google Scholar 

  46. Schnell, E., Sizemore, M., Karimzadegan, S., Chen, L., Bredt, D. S., & Nicoll, R. A. (2002). Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number. Proceedings of the National Academy of Sciences of U S A, 99, 13902–13907.

    Article  CAS  Google Scholar 

  47. Singer, D., Biel, M., Lotan, I., Flockerzi, V., Hofmann, F., & Dascal, N. (1991). The roles of the subunits in the function of the calcium channel. Science, 253, 1553–1557.

    Article  PubMed  CAS  Google Scholar 

  48. Smotrys, J. E., & Linder, M. E. (2004). Palmitoylation of intracellular signaling proteins: regulation and function. Annual Review of Biochemistry, 73, 559–587.

    Article  PubMed  CAS  Google Scholar 

  49. Tomita, S., Chen, L., Kawasaki, Y., Petralia, R. S., Wenthold, R. J., Nicoll, R. A., & Bredt, D. S. (2003). Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins. Journal of Cell Biology, 161, 805–816.

    Article  PubMed  CAS  Google Scholar 

  50. Tomita, S., Adesnik, H., Sekiguchi, M., Zhang, W., Wada, K., Howe, J. R., Nicoll, R. A., & Bredt, D. S. (2005). Stargazin modulates AMPA receptor gating and trafficking by distinct domains. Nature, 435, 1052–1058.

    Article  PubMed  CAS  Google Scholar 

  51. Tomita, S., Stein, V., Stocker, T. J., Nicoll, R. A., & Bredt, D. S. (2005). Bidirectional synaptic plasticity regulated by phosphorylation of stargazin-like TARPs. Neuron, 45, 269–277.

    Article  PubMed  CAS  Google Scholar 

  52. Ursu, D., Sebille, S., Dietze, B., Freise, D., Flockerzi, V., & Melzer, W. (2001). Excitation–contraction coupling in skeletal muscle of a mouse lacking the dihydropyridine receptor subunit gamma1. Journal of Physiology, 533, 367–377.

    Article  PubMed  CAS  Google Scholar 

  53. Van Itallie, C. M., & Anderson, J. M. (2006). Claudins and epithelial paracellular transport. Annual Review of Physiology, 68, 403–429.

    Article  PubMed  Google Scholar 

  54. Van Itallie, C. M., Gambling, T. M., Carson, J. L., & Anderson, J. M. (2005). Palmitoylation of claudins is required for efficient tight-junction localization. Journal of Cell Science, 118, 1427–1436.

    Article  PubMed  Google Scholar 

  55. Vandenberghe, W., Nicoll, R. A., & Bredt, D. S. (2005). Stargazin is an AMPA receptor auxiliary subunit. Proceedings of the National Academy of Sciences of U S A, 102, 485–490.

    Article  CAS  Google Scholar 

  56. Wei, X. Y., Perez-Reyes, E., Lacerda, A. E., Schuster, G., Brown, A. M., & Birnbaumer, L. (1991). Heterologous regulation of the cardiac Ca2+ channel alpha 1 subunit by skeletal muscle beta and gamma subunits. Implications for the structure of cardiac L-type Ca2+ channels. Journal of Biological Chemistry, 266, 21943–21947.

    PubMed  CAS  Google Scholar 

  57. Zhou, F., Xue, Y., Yao, X., & Xu, Y. (2006). CSS-Palm: Palmitoylation site prediction with a clustering and scoring strategy (CSS). Bioinformatics, 22, 894–896.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip M. Best.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, RS., Deng, TC., Garcia, T. et al. Calcium channel γ subunits: a functionally diverse protein family. Cell Biochem Biophys 47, 178–186 (2007). https://doi.org/10.1007/s12013-007-0002-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-007-0002-0

Keywords

Navigation