Skip to main content

Advertisement

Log in

Opinion: alternative views of AMP-activated protein kinase

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Genes most closely related to adenosine monophosphate (AMP)-activated protein kinase, including SAD kinases and Par-1 regulate cell polarity, although AMP-activated protein kinase (AMPK) modulates cellular energy status. LKB1 (Par-4) is required for normal activation of AMPK in the liver and also regulates cell polarity. AMPK is proposed to inhibit energy consuming activity while initiating energy producing activity during energy limitation. Demonstration that metformin, a common drug for Type 2 diabetes, requires LKB1 for full therapeutic benefit has increased interest in AMPK signaling. Despite the potential importance of AMPK signaling for diabetes, metabolic syndrome and even cancer, the developmental processes regulated by AMPK in genetically mutant animals require further elucidation. Mouse conditional null mutants for AMPK activity will allow genetic elucidation of AMPK function in vivo. This perspective focuses on sequence and structural moieties of AMPK and genetic analysis of AMPK mutations. Interestingly, the predicted protein structure of the carboxy-terminus of AMPKα resembles the carboxy-terminal KA-1 domain of MARK3, a Par-1 orthologue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, J., Chen, Z. P., Van Denderen, B. J., Morton, C. J., Parker, M. W., Witters, L. A., Stapleton, D., & Kemp, B. E. (2004). Intrasteric control of ampk via the gammal subunit amp allosteric regulatory site. Protein Science, 13, 155–165.

    Article  PubMed  CAS  Google Scholar 

  2. Andreelli, F., Foretz, M., Knauf, C., Cani, P. D., Perrin, C., Iglesias, M. A., Pillot, B., Bado, A., Tronche, F., Mithieux, G., Vaulont, S., Burcelin, R., & Viollet, B. (2006). Liver adenosine monophosphate-activated kinase-alpha2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin. Endocrinology, 147, 2432–2441.

    Article  PubMed  CAS  Google Scholar 

  3. Apfeld, J., O’Connor, G., McDonagh, T., DiStefano, P. S., & Curtis, R. (2004). The amp-activated protein kinase aak-2 links energy levels and insulin-like signals to lifespan in c.␣Elegans. Genes & Development, 18, 3004–3009.

    Article  CAS  Google Scholar 

  4. Arad, M., Moskowitz, I. P., Patel, V. V., Ahmad, F., Perez-Atayde, A. R., Sawyer, D. B., Walter, M., Li, G. H., Burgon, P. G., Maguire, C. T., Stapleton, D., Schmitt, J. P., Guo, X.␣X., Pizard, A., Kupershmidt, S., Roden, D. M., Berul, C.␣I., Seidman, C. E., & Seidman, J. G. (2003). Transgenic mice overexpressing mutant prkag2 define the cause of wolff-parkinson-white syndrome in glycogen storage cardiomyopathy. Circulation, 107, 2850–2856.

    Article  PubMed  CAS  Google Scholar 

  5. Baas, A. F., Kuipers, J., van der Wel, N. N., Batlle, E., Koerten, H. K., Peters, P. J., & Clevers, H. C. (2004). Complete polarization of single intestinal epithelial cells upon activation of 1kb1 by strad. Cell, 116, 457–466.

    Article  PubMed  CAS  Google Scholar 

  6. Bateman, A. (1997). The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends in Biochemical Science, 22, 12–13.

    Article  CAS  Google Scholar 

  7. Bertram, P. G., Choi, J. H., Carvalho, J., Chan, T. F., Ai, W., & Zheng, X. F. (2002). Convergence of tor-nitrogen and snf1-glucose signaling pathways onto gln3. Molecular and Cellular Biology, 22, 1246–1252.

    Article  PubMed  CAS  Google Scholar 

  8. Carling, D. (2005). Amp-activated protein kinase: Balancing the scales. Biochimie, 87, 87–91.

    Article  PubMed  CAS  Google Scholar 

  9. Carling, D., Aguan, K., Woods, A., Verhoeven, A. J., Beri, R. K., Brennan, C. H., Sidebottom, C., Davison, M. D., & Scott, J. (1994). Mammalian amp-activated protein kinase is homologous to yeast and plant protein kinases involved in the regulation of carbon metabolism. The Journal of Biological Chemistry, 269, 11442–11448.

    PubMed  CAS  Google Scholar 

  10. Carling, D., Clarke, P. R., Zammit, V. A., & Hardie, D. G. (1989). Purification and characterization of the amp-activated protein kinase. Copurification of acetyl-coa carboxylase kinase and 3-hydroxy-3-methylglutaryl-coa reductase kinase activities. European Journal of Biochemistry, 186, 129–136.

    Article  PubMed  CAS  Google Scholar 

  11. Carling, D., Zammit, V. A., & Hardie, D. G. (1987). A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Letters, 223, 217–222.

    Article  PubMed  CAS  Google Scholar 

  12. Carlson, M., Osmond, B. C., & Botstein, D. (1981). Mutants of yeast defective in sucrose utilization. Genetics, 98, 25–40.

    PubMed  CAS  Google Scholar 

  13. Celenza, J. L., & Carlson, M. (1986). A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science, 233, 1175–1180.

    Article  PubMed  CAS  Google Scholar 

  14. Celenza, J. L., & Carlson, M. (1989). Mutational analysis of the saccharomyces cerevisiae snf1 protein kinase and evidence for functional interaction with the snf4 protein. Molecular and Cellular Biology, 9, 5034–5044.

    PubMed  CAS  Google Scholar 

  15. Celenza, J. L., Eng, F. J., & Carlson, M. (1989). Molecular analysis of the snf4 gene of saccharomyces cerevisiae: Evidence for physical association of the snf4 protein with the␣snf1 protein kinase. Molecular and Cellular Biology, 9, 5045–5054.

    PubMed  CAS  Google Scholar 

  16. Cheung, P. C., Salt, I. P., Davies, S. P., Hardie, D. G., & Carling, D. (2000). Characterization of amp-activated protein kinase gamma-subunit isoforms and their role in amp binding. The Biochemical Journal, 346(Pt 3), 659–669.

    Article  PubMed  CAS  Google Scholar 

  17. Cool, B., Zinker, B., Chiou, W., Kifle, L., Cao, N., Perham, M., Dickinson, R., Adler, A., Gagne, G., Iyengar, R., Zhao, G., Marsh, K., Kym, P., Jung, P., Camp, H. S., & Frevert, E. (2006). Identification and characterization of a small molecule ampk activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metabolism, 3, 403–416.

    Article  PubMed  CAS  Google Scholar 

  18. Corton, J. M., Gillespie, J. G., Hawley, S. A., & Hardie, D.␣G. (1995). 5-aminoimidazole-4-carboxamide ribonucleoside. A␣specific method for activating amp-activated protein kinase␣in intact cells? European Journal of Biochemistry, 229, 558–565.

    Article  PubMed  CAS  Google Scholar 

  19. Curtis, R., O’Connor, G., & DiStefano, P. S. (2006). Aging networks in caenorhabditis elegans: Amp-activated protein kinase (aak-2) links multiple aging and metabolism pathways. Aging Cell, 5, 119–126.

    Article  PubMed  CAS  Google Scholar 

  20. Davies, S. P., Carling, D., & Hardie, D. G. (1989). Tissue distribution of the amp-activated protein kinase, and lack of activation by cyclic-amp-dependent protein kinase, studied using a specific and sensitive peptide assay. European Journal of Biochemistry, 186, 123–128.

    Article  PubMed  CAS  Google Scholar 

  21. Davies, S. P., Hawley, S. A., Woods, A., Carling, D., Haystead, T. A., & Hardie, D. G. (1994). Purification of the amp-activated protein kinase on atp-gamma-sepharose and analysis of its subunit structure. European Journal of Biochemistry, 223, 351–357.

    Article  PubMed  CAS  Google Scholar 

  22. Dunn, W. A. Jr. (1990). Studies on the mechanisms of autophagy: Formation of the autophagic vacuole. The Journal of Cell Biology, 110, 1923–1933.

    Article  PubMed  Google Scholar 

  23. Dunn, W. A. Jr. (1990). Studies on the mechanisms of autophagy: Maturation of the autophagic vacuole. The Journal of Cell Biology, 110, 1935–1945.

    Article  PubMed  CAS  Google Scholar 

  24. El-Mir, M. Y., Nogueira, V., Fontaine, E., Averet, N., Rigoulet, M., & Leverve, X. (2000). Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex i. The Journal of Biological Chemistry, 275, 223–228.

    Article  PubMed  CAS  Google Scholar 

  25. Fahimi, H. D., Reinicke, A., Sujatta, M., Yokota, S., Ozel, M., Hartig, F., & Stegmeier, K. (1982). The short and long-term effects of bezafibrate in the rat. Annals of the New York Academy of Sciences, 386, 111–135.

    Article  PubMed  CAS  Google Scholar 

  26. Fryer, L. G., Parbu-Patel, A., & Carling, D. (2002). The anti-diabetic drugs rosiglitazone and metformin stimulate amp-activated protein kinase through distinct signaling pathways. The Journal of Biological Chemistry, 277, 25226–25232.

    Article  PubMed  CAS  Google Scholar 

  27. Gao, G., Fernandez, C. S., Stapleton, D., Auster, A. S., Widmer, J., Dyck, J. R., Kemp, B. E., & Witters, L. A. (1996). Non-catalytic beta- and gamma-subunit isoforms of the 5′-amp-activated protein kinase. The Journal of Biological Chemistry, 271, 8675–8681.

    Article  PubMed  CAS  Google Scholar 

  28. Gollob, M. H., Green, M. S., Tang, A. S., Gollob, T., Karibe, A., Ali Hassan, A. S., Ahmad, F., Lozado, R., Shah, G., Fananapazir, L., Bachinski, L. L., & Roberts, R. (2001). Identification of a gene responsible for familial wolff-parkinson-white syndrome. The New England Journal of Medicine, 344, 1823–1831.

    Article  PubMed  CAS  Google Scholar 

  29. Guigas, B., Bertrand, L., Taleux, N., Foretz, M., Wiernsperger, N., Vertommen, D., Andreelli, F., Viollet, B., & Hue, L. (2006). 5-aminoimidazole-4-carboxamide-1-{beta}-d-ribofuranoside and metformin inhibit hepatic glucose phosphorylation by an amp-activated protein kinase-independent effect on glucokinase translocation. Diabetes, 55, 865–874.

    Article  PubMed  CAS  Google Scholar 

  30. Guo, S., & Kemphues, K. J. (1995). Par-1, a gene required for establishing polarity in c. Elegans embryos, encodes a putative ser/thr kinase that is asymmetrically distributed. Cell, 81, 611–620.

    Article  PubMed  CAS  Google Scholar 

  31. Hardie, D. G., Hawley, S. A., & Scott, J. W. (2006). Amp-activated protein kinase–development of the energy sensor concept. The Journal of Physiology, 574, 7–15.

    Article  PubMed  CAS  Google Scholar 

  32. Hartmann-Petersen, R., Semple, C. A., Ponting, C. P., Hendil, K. B., & Gordon, C. (2003). Uba domain containing proteins in fission yeast. The International Journal of Biochemistry & Cell Biology, 35, 629–636.

    Article  CAS  Google Scholar 

  33. Hawley, S. A., Boudeau, J., Reid, J. L., Mustard, K. J., Udd, L., Makela, T. P., Alessi, D. R., & Hardie, D. G. (2003). Complexes between the 1kb1 tumor suppressor, strad alpha/beta and mo25 alpha/beta are upstream kinases in the amp-activated protein kinase cascade. Journal of Biology, 2, 28.

    Article  PubMed  Google Scholar 

  34. Hawley, S. A., Pan, D. A., Mustard, K. J., Ross, L., Bain, J., Edelman, A. M., Frenguelli, B. G., & Hardie, D. G. (2005). Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for amp-activated protein kinase. Cell Metabolism, 2, 9–19.

    Article  PubMed  CAS  Google Scholar 

  35. Hoepfner, D., Schildknegt, D., Braakman, I., Philippsen, P., & Tabak, H. F. (2005). Contribution of the endoplasmic reticulum to peroxisome formation. Cell, 122, 85–95.

    Article  PubMed  CAS  Google Scholar 

  36. Hong, S. P., Leiper, F. C., Woods, A., Carling, D., & Carlson, M. (2003). Activation of yeast snf1 and mammalian amp-activated protein kinase by upstream kinases. Proceedings of the National Academy of Sciences of the United States of America, 100, 8839–8843.

    Article  PubMed  CAS  Google Scholar 

  37. Honigberg, S. M., & Lee, R. H. (1998). Snf1 kinase connects nutritional pathways controlling meiosis in saccharomyces cerevisiae. Molecular and Cellular Biology, 18, 4548–4555.

    PubMed  CAS  Google Scholar 

  38. Hudson, E. R., Pan, D. A., James, J., Lucocq, J. M., Hawley, S. A., Green, K. A., Baba, O., Terashima, T., & Hardie, D.␣G. (2003). A novel domain in amp-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Current Biology, 13, 861–866.

    Article  PubMed  CAS  Google Scholar 

  39. Hurley, R. L., Anderson, K. A., Franzone, J. M., Kemp, B.␣E., Means, A. R., & Witters, L. A. (2005). The ca2+/calmodulin-dependent protein kinase kinases are amp-activated protein kinase kinases. The Journal of Biological Chemistry, 280, 29060–29066.

    Article  PubMed  CAS  Google Scholar 

  40. Ignoul, S., & Eggermont, J. (2005). Cbs domains: Structure, function, and pathology in human proteins. American Journal of Physiology. Cell Physiology, 289, C1369–C1378.

    Article  PubMed  CAS  Google Scholar 

  41. Inoki, K., Ouyang, H., Zhu, T., Lindvall, C., Wang, Y., Zhang, X., Yang, Q., Bennett, C., Harada, Y., Stankunas, K., Wang, C. Y., He, X., MacDougald, O. A., You, M., Williams, B. O., & Guan, K. L. (2006). Tsc2 integrates wnt and energy signals via a coordinated phosphorylation by ampk and gsk3 to regulate cell growth. Cell, 126, 955–968.

    Article  PubMed  CAS  Google Scholar 

  42. Inoki, K., Zhu, T., & Guan, K. L. (2003). Tsc2 mediates cellular energy response to control cell growth and survival. Cell, 115, 577–590.

    Article  PubMed  CAS  Google Scholar 

  43. Iseli, T. J., Walter, M., van Denderen, B. J., Katsis, F., Witters, L. A., Kemp, B. E., Michell, B. J., & Stapleton, D. (2005). Amp-activated protein kinase beta subunit tethers alpha and␣gamma subunits via its c-terminal sequence (186–270). The Journal of Biological Chemistry, 280, 13395–13400.

    Article  PubMed  CAS  Google Scholar 

  44. Jaleel, M., Villa, F., Deak, M., Toth, R., Prescott, A. R., Van Aalten, D. M., & Alessi, D. R. (2006). The ubiquitin-associated domain of ampk-related kinases regulates conformation and lkb1-mediated phosphorylation and activation. The Biochemical Journal, 394, 545–555.

    Article  PubMed  CAS  Google Scholar 

  45. Jishage, K., Nezu, J., Kawase, Y., Iwata, T., Watanabe, M., Miyoshi, A., Ose, A., Habu, K., Kake, T., Kamada, N., Ueda, O., Kinoshita, M., Jenne, D. E., Shimane, M., & Suzuki, H. (2002). Role of 1kb1, the causative gene of peutz-jegher's syndrome, in embryogenesis and polyposis. Proceedings of the National Academy of Sciences of the United States of America, 99, 8903–8908.

    PubMed  CAS  Google Scholar 

  46. Jorgensen, S. B., Viollet, B., Andreelli, F., Frosig, C., Birk, J.␣B., Schjerling, P., Vaulont, S., Richter, E. A., & Wojtaszewski, J. F. (2004). Knockout of the alpha2 but not alpha1 5′-amp-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside but not contraction-induced glucose uptake in skeletal muscle. The Journal of Biological Chemistry, 279, 1070–1079.

    Article  PubMed  CAS  Google Scholar 

  47. Kahn, B. B., Alquier, T., Carling, D., & Hardie, D. G. (2005). Amp-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metabolism, 1, 15–25.

    Article  PubMed  CAS  Google Scholar 

  48. Kishi, M., Pan, Y. A., Crump, J. G., & Sanes, J. R. (2005). Mammalian sad kinases are required for neuronal polarization. Science, 307, 929–932.

    Article  PubMed  CAS  Google Scholar 

  49. Kuchin, S., Vyas, V. K., & Carlson, M. (2002). Snf1 protein kinase and the repressors nrg1 and nrg2 regulate flo11, haploid invasive growth, and diploid pseudohyphal differentiation. Molecular and Cellular Biology, 22, 3994–4000.

    Article  PubMed  CAS  Google Scholar 

  50. Kunau, W. H., Dommes, V., & Schulz, H. (1995). Beta-oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: A century of continued progesss. Progress in Lipid Research, 34, 267–342.

    Article  PubMed  CAS  Google Scholar 

  51. Kwanyuen, P., Witherspoon, S. M., Creech, D. R., Colton, H. M., Falls, J. G., & Cariello, N. F. (2006). Flow cytometric assessment of peroxisome proliferation from frozen liver of fibrate-treated monkeys. International Journal of Toxicology, 25, 41–47.

    Article  PubMed  CAS  Google Scholar 

  52. Lum, J. J., DeBerardinis, R. J., & Thompson, C. B. (2005). Autophagy in metazoans: Cell survival in the land of plenty. Nature Reviews. Molecular Cell Biology, 6, 439–448.

    Article  PubMed  CAS  Google Scholar 

  53. Manning, G., Whyte, D. B., Martinez, R., Hunter, T., & Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science, 298, 1912–1934.

    Article  PubMed  CAS  Google Scholar 

  54. Michell, B. J., Stapleton, D., Mitchelhill, K. I., House, C. M., Katsis, F., Witters, L. A., & Kemp, B. E. (1996). Isoform-specific purification and substrate specificity of the 5′-amp-activated protein kinase. The Journal of Biological Chemistry, 271, 28445–284450.

    Article  PubMed  CAS  Google Scholar 

  55. Milan, D., Jeon, J. T., Looft, C., Amarger, V., Robic, A., Thelander, M., Rogel-Gaillard, C., Paul, S., Iannuccelli, N., Rask, L., Ronne, H., Lundstrom, K., Reinsch, N., Gellin, J., Kalm, E., Roy, P. L., Chardon, P., & Andersson, L. (2000). A mutation in prkag3 associated with excess glycogen content in pig skeletal muscle. Science, 288, 1248–1251.

    Article  PubMed  CAS  Google Scholar 

  56. Minokoshi, Y., Alquier, T., Furukawa, N., Kim, Y. B., Lee, A., Xue, B., Mu, J., Foufelle, F., Ferre, P., Birnbaum, M. J., Stuck, B. J., & Kahn, B. B. (2004). Amp-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature, 428, 569–574.

    Article  PubMed  CAS  Google Scholar 

  57. Minokoshi, Y., Kim, Y. B., Peroni, O. D., Fryer, L. G., Muller, C., Carling, D., & Kahn, B. B. (2002). Leptin stimulates fatty-acid oxidation by activating amp-activated protein kinase. Nature, 415, 339–343.

    Article  PubMed  CAS  Google Scholar 

  58. Mitchelhill, K. I., Stapleton, D., Gao, G., House, C., Michell, B., Katsis, F., Witters, L. A., & Kemp, B. E. (1994). Mammalian amp-activated protein kinase shares structural and functional homology with the catalytic domain of yeast snf1 protein kinase. The Journal of Biological Chemistry, 269, 2361–2364.

    PubMed  CAS  Google Scholar 

  59. Nayak, V., Zhao, K., Wyce, A., Schwartz, M. F., Lo, W. S., Berger, S. L., & Marmorstein, R. (2006). Structure and dimerization of the kinase domain from yeast snf1, a member of the snf1/ampk protein family. Structure, 14, 477–485.

    Article  PubMed  CAS  Google Scholar 

  60. Neigeborn, L., & Carlson, M. (1984). Genes affecting the regulation of suc2 gene expression by glucose repression in saccharomyces cerevisiae. Genetics, 108, 845–858.

    PubMed  CAS  Google Scholar 

  61. Owen, M. R., Doran, E., & Halestrap, A. P. (2000). Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. The Biochemical Journal, 348(Pt 3), 607–614.

    Article  PubMed  CAS  Google Scholar 

  62. Pan, D. A., & Hardie, D. G. (2002). A homologue of amp-activated protein kinase in drosophila melanogaster is␣sensitive to amp and is activated by atp depletion. The Biochemical Journal, 367, 179–186.

    Article  PubMed  CAS  Google Scholar 

  63. Polekhina, G., Gupta, A., van Denderen, B. J., Feil, S. C., Kemp, B. E., Stapleton, D., & Parker, M. W. (2005). Ampk beta subunit targets metabolic stress sensing to glycogen. Structure, 13, 1453–1462.

    Article  PubMed  CAS  Google Scholar 

  64. Polekhina, G., Gupta, A., Michell, B. J., van Denderen, B., Murthy, S., Feil, S. C., Jennings, I. G., Campbell, D. J., Witters, L. A., Parker, M. W., Kemp, B. E., & Stapleton, D. (2003). Structural basis for glycogen recognition by amp-activated protein kinase. Current Biology, 13, 867–871.

    Article  PubMed  CAS  Google Scholar 

  65. Polypeptide modeling: residues 269–552 of human PRKAA2 (AMPKα2). were submitted to the Structure Prediction Meta Server (www.bioinfo.pl/meta/). This server utilizes five structure prediction servers: Sam-T02 (http://www.cse.ucsc.edu/research/compbio/HMM-apps/T02-query.html), Inub (http://fischerlab.bioinformatics.buffalo.edu/inub/), Fugue2 (http://www.cryst.bioc.cam.ac.uk/∼fugue/prfsearch.html), 3D-PSSM (http://www.sbg.bio.ic.ac.uk/∼3dpssm/), GenTHREADER (http://bioinf.cs.ucl.ac.uk/psipred/), and 3-D Jury to identify structural templates for homology modeling. Two structures were identified as templates for a C-terminal region of PRKAA2 (K398-R552), both corresponding to the C-terminal KA-1 domain from mouse MARK3 (PDB ID 1v5s and 1ul7). Models of the PRKAA2 C-terminal domain were built, guided by the alignments returned from the fold-recognition servers, using the modeler module of the InsightII molecular modeling system from Accelrys Inc. (www.accelrys.com). The homology model was evaluated for sequence-structure compatibility using the Verify-3D function of the Profiles-3D module from InsightII. The ideal helix was built using the Biopolymer module of InsightII. Alignment and neighbor-joining phylogenetic tree calculations were performed on the protein sequences using the ClustalX (Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 24, 4876–4882) and Njplot programs (The neighbor-joining method: a new method for reconstructing phylogenetic trees. Saitou N, Nei M. Mol Biol Evol. 1987 Jul; 4(4): 406–425).

    Google Scholar 

  66. Rider, M. H. (2006). The ubiquitin-associated domain of ampk-related protein kinase allows lkbl-induced phosphorylation and activation. The Biochemical Journal, 394, e7–e9.

    Article  PubMed  CAS  Google Scholar 

  67. van Roermund, C. W., Waterham, H. R., Ijlst, L., & Wanders, R. J. (2003). Fatty acid metabolism in saccharomyces cerevisiae. Cellular and Molecular Life Sciences, 60, 1838–1851.

    Article  PubMed  CAS  Google Scholar 

  68. Rudolph, M. J., Amodeo, G. A., Bai, Y., & Tong, L. (2005). Crystal structure of the protein kinase domain of yeast amp-activated protein kniase snf1. Biochemical and Biophysical Research Communications, 337, 1224–1228.

    Article  PubMed  CAS  Google Scholar 

  69. Santangelo, G. M. (2006). Glucose signaling in saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 70, 253–282.

    Article  PubMed  CAS  Google Scholar 

  70. Shaw, R. J., Lamia, K. A., Vasquez, D., Koo, S. H., Bardeesy, N., Depinho, R. A., Montminy, M., & Cantley, L. C. (2005). The kinase lkb1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science, 310, 1642–1646.

    Article  PubMed  CAS  Google Scholar 

  71. Sidhu, J. S., Rajawat, Y. S., Rami, T. G., Gollob, M. H., Wang,␣Z., Yuan, R., Marian, A. J., DeMayo, F. J., Weilbacher, D., Taffet, G. E., Davies, J. K., Carling, D., Khoury, D. S., & Roberts, R. (2005). Transgenic mouse model of ventricular preexcitation and atrioventricular reentrant tachycardia induced by an amp-activated protein kinase loss-of-function mutation responsible for wolff-parkinson-white syndrome. Circulation, 111, 21–29.

    Article  PubMed  CAS  Google Scholar 

  72. Simon, M., Binder, M., Adam, G., Hartig, A., & Ruis, H. (1992). Control of peroxisome proliferation in saccharomyces cerevisiae by adr1, snf1 (cat1, ccr1) and snf1 (cat3). Yeast, 8, 303–309.

    Article  PubMed  CAS  Google Scholar 

  73. Stapleton, D., Gao, G., Michell, B. J., Widmer, J., Mitchelhill, K., Teh, T., House, C. M., Witters, L. A., & Kemp, B. E. (1994). Mammalian 5′-amp-activated protein kinase non-catalytic subunits are homologs of proteins that interact with yeast snf1 protein kinase. The Journal of Biological Chemistry, 269, 29343–29346.

    PubMed  CAS  Google Scholar 

  74. Van der Leij, I., Van den Berg, M., Boot, R., Franse, M., Distel, B., & Tabak, H. F. (1992). Isolation of peroxisome assembly mutants from saccharomyces cerevisiae with different morphologies using a novel positive selection procedure. The Journal of Cell Biology, 119, 153–162.

    Article  PubMed  Google Scholar 

  75. Veenhuis, M., Mateblowski, M., Kunau, W. H., & Harder, W. (1987). Proliferation of microbodies in saccharomyces cerevisiae. Yeast, 3, 77–84.

    Article  PubMed  CAS  Google Scholar 

  76. Villena, J. A., Viollet, B., Andreelli, F., Kahn, A., Vaulont, S., & Sul, H. S. (2004). Induced adiposity and adipocyte hypertrophy in mice lacking the amp-activated protein kinase-alpha2 subunit. Diabetes, 53, 2242–2249.

    Article  PubMed  CAS  Google Scholar 

  77. Viollet, B., Andreelli, F., Jorgensen, S. B., Perrin, C., Flamez, D., Mu, J., Wojtaszewski, J. F., Schuit, F. C., Birnbaum, M., Richter, E., Burcelin, R., & Vaulont, S. (2003). Physiological role of amp-activated protein kinase (ampk): Insights from knockout mouse models. Biochemical Society Transactions, 31, 216–219.

    Article  PubMed  CAS  Google Scholar 

  78. Viollet, B., Andreelli, F., Jorgensen, S. B., Perrin, C., Geloen, A., Flamez, D., Mu, J., Lenzner, C., Baud, O., Bennoun, M., Gomas, E., Nicolas, G., Wojtaszewski, J. F., Kahn, A., Carling, D., Schuit, F. C., Birnbaum, M. J., Richter, E. A., Burcelin, R., & Vaulont, S. (2003). The amp-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity. The Journal of Clinical Investigation, 111, 91–98.

    Article  PubMed  CAS  Google Scholar 

  79. Wang, Z., Wilson, W. A., Fujino, M. A., & Roach, P. J. (2001). Antagonistic controls of autophagy and glycogen accumulation by snf1p, the yeast homolog of amp-activated protein kinase, and the cyclin-dependent kinase pho85p. Molecular and Cellular Biology, 21, 5742–5752.

    Article  PubMed  CAS  Google Scholar 

  80. Wilson, W. A., Hawley, S. A., & Hardie, D. G. (1996). Glucose repression/derepression in budding yeast: Snf1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high amp:Atp ratio. Current Biology, 6, 1426–1434.

    Article  PubMed  CAS  Google Scholar 

  81. Wong, K. A., & Lodish, H. F. (2006). A revised model for ampk structure: The alpha -subunit binds to both the beta - and gamma -subunits but there is no direct binding between beta - and gamma -subunits. The Journal of Biological Chemistry.

  82. Woods, A., Dickerson, K., Heath, R., Hong, S. P., Momcilovic, M., Johnstone, S. R., Carlson, M., & Carling, D. (2005). C(ca2+)/calmodulin-dependent protein kinase kinase-beta acts upstream of amp-activated protein kinase in mammalian cells. Cell Metabolism, 2, 21–33.

    Article  PubMed  CAS  Google Scholar 

  83. Woods, A., Johnstone, S. R., Dickerson, K., Leiper, F. C., Fryer, L. G., Neumann, D., Schlattner, U., Wallimann, T., Carlson, M., & Carling, D. (2003). Lkb1 is the upstream kinase in the amp-activated protein kinase cascade. Current Biology, 13, 2004–2008.

    Article  PubMed  CAS  Google Scholar 

  84. Ylikorkala, A., Rossi, D. J., Korsisaari, N., Luukko, K., Alitalo, K., Henkemeyer, M., & Makela, T. P. (2001). Vascular abnormalities and deregulation of vegf in lkb1-deficient mice. Science, 293, 1323–1326.

    Article  PubMed  CAS  Google Scholar 

  85. Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre, J., Doebber, T., Fujii, N., Musi, N., Hirshman, M. F., Goodyear, L. J., & Moller, D. E. (2001). Role of amp-activated protein kinase in mechanism of metformin action. The Journal of Clinical Investigation, 108, 1167–1174.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by funding from the Whitehall Foundation and NIMH RO1-073155 to J. E. B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay E. Brenman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brenman, J.E., Temple, B.R.S. Opinion: alternative views of AMP-activated protein kinase. Cell Biochem Biophys 47, 321–331 (2007). https://doi.org/10.1007/s12013-007-0005-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-007-0005-x

Keywords

Navigation