Skip to main content

Advertisement

Log in

P2X3 Receptor Involvement in Pain States

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The understanding of how pain is processed at each stage in the peripheral and central nervous system is the precondition to develop new therapies for the selective treatment of pain. In the periphery, ATP can be released from various cells as a consequence of tissue injury or visceral distension and may stimulate the local nociceptors. The highly selective distribution of P2X3 and P2X2/3 receptors within the nociceptive system has inspired a variety of approaches to elucidate the potential role of ATP as a pain mediator. Depolarization by ATP of neurons in pain–relevant neuronal structures such as trigeminal ganglion, dorsal root ganglion, and spinal cord dorsal horn neurons are well investigated. P2X receptor-mediated afferent activation appears to have been implicated in visceral and neuropathic pain and even in migraine and cancer pain. This article reviews recently published research describing the role that ATP and P2X receptors may play in pain perception, highlighting the importance of the P2X3 receptor in different states of pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abbreviations

BBG:

Brilliant blue G

BzATP:

2′- and 3′-O-(4-benzoyl-benzoyl)-ATP

CFA:

complete Freund’s adjuvant

CGRP:

calcitonin gene related peptide

DRG:

dorsal root ganglion

ERK:

extracellular signal-regulated protein kinase

Ip5I:

di-inosine pentaphosphate

IBS:

irritable bowel syndrome

α,β-meATP:

α,β-methylene ATP

2-MeSATP:

2-methylthio ATP

NK-1:

neurokinin-1

PAR:

proteinase-activated receptors

PPADS:

pyridoxal-phosphate-6-azophenyl-2′, 4′-disulfonic acid

RB2:

reactive blue 2

TG:

trigeminal ganglion

TNP-ATP:

trinitrophenyl-substituted ATP

TRPV1:

transient receptor potential vanilloid 1

References

  1. Collier HO, James GW, Schneider C (1966) Antagonism by aspirin and fenamates of bronchoconstriction and nociception induced by adenosine-5′-triphosphate. Nature 212:411–412

    PubMed  CAS  Google Scholar 

  2. Bleehen T, Keele CA (1977) Observations on the algogenic actions of adenosine compounds on the human blister base preparation. Pain 3:367–377

    PubMed  CAS  Google Scholar 

  3. Coutts AA, Jorizzo JL, Eady RA, Greaves MW, Burnstock G (1981) Adenosine triphosphate-evoked vascular changes in human skin: mechanism of action. Eur J Pharmacol 76:391–401

    PubMed  CAS  Google Scholar 

  4. Tsuda M, Koizumi S, Kita A, Shigemoto Y, Ueno S, Inoue K (2000) Mechanical allodynia caused by intraplantar injection of P2X receptor agonist in rats, involvement of heteromeric P2X2/3 receptor signaling in capsaicin-insensitive primary afferent neurons. J Neurosci 20:RC90

    PubMed  CAS  Google Scholar 

  5. Hamilton SG, McMahon SB, Lewin GR (2001) Selective activation of nociceptors by P2X receptor agonists in normal and inflamed rat skin. J Physiol 534:437–445

    PubMed  CAS  Google Scholar 

  6. Inoue K, Koizumi S, Ueno S (1996) Implication of ATP receptors in brain functions. Prog Neurobiol 50:483–492

    PubMed  CAS  Google Scholar 

  7. Mork H, Ashina M, Bendtsen L, Olesen J, Jensen R (2003) Experimental muscle pain and tenderness following infusion of endogenous substances in humans. Eur J Pain 7:145–153

    PubMed  CAS  Google Scholar 

  8. Ferguson DR, Kennedy I, Burton TJ (1997) ATP is released from rabbit urinary bladder epithelial cells by hydrostatic pressure changes—a possible sensory mechanism? J Physiol 505(Pt 2):503–511

    PubMed  CAS  Google Scholar 

  9. Park W, Masuda I, Cardenal-Escarcena A, Palmer DL, McCarty DJ (1996) Inorganic pyrophosphate generation from adenosine triphosphate by cell-free human synovial fluid. J Rheumatol 23:665–671

    PubMed  CAS  Google Scholar 

  10. Ryan LM, Rachow JW, McCarty DJ (1991) Synovial fluid ATP, a potential substrate for the production of inorganic pyrophosphate. J Rheumatol 18:716–720

    PubMed  CAS  Google Scholar 

  11. Chizh BA, Illes P (2001) P2X receptors and nociception. Pharmacol Rev 53:553–568

    PubMed  CAS  Google Scholar 

  12. Burnstock G (2000) P2X receptors in sensory neurones. Br J Anaesth 84:476–488

    PubMed  CAS  Google Scholar 

  13. Burnstock G (2006) Historical review: ATP as a neurotransmitter. Trends Pharmacol Sci 27:166–176

    PubMed  CAS  Google Scholar 

  14. Erb L, Liao Z, Seye CI, Weisman GA (2006) P2 Receptors, intracellular signaling. Pflugers Arch 452:552–562

    PubMed  CAS  Google Scholar 

  15. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    PubMed  CAS  Google Scholar 

  16. Ji RR, Baba H, Brenner GJ, Woolf CJ (1999) Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nat Neurosci 2:1114–1119

    PubMed  CAS  Google Scholar 

  17. Nicke A, Baumert HG, Rettinger J, Eichele A, Lambrecht G, Mutschler E, Schmalzing G (1998) P2X1 and P2X3 receptors form stable trimers: a novel structural motif of ligand-gated ion channels. EMBO J 17:3016–3028

    PubMed  CAS  Google Scholar 

  18. Rettinger J, Aschrafi A, Schmalzing G (2000) Roles of individual n-glycans for ATP potency and expression of the rat P2X1 receptor. J Biol Chem 275:33542–33547

    PubMed  CAS  Google Scholar 

  19. Egan TM, Cox JA, Voigt MM (2004) Molecular structure of P2X receptors. Curr Top Med Chem 4:821–829

    PubMed  CAS  Google Scholar 

  20. Egan TM, Samways DS, Li Z (2006) Biophysics of P2X receptors. Pflugers Arch 452:501–512

    PubMed  CAS  Google Scholar 

  21. Gever JR, Cockayne DA, Dillon MP, Burnstock G, Ford AP (2006) Pharmacology of P2X channels. Pflugers Arch 452:513–537

    PubMed  CAS  Google Scholar 

  22. Hussl S, Boehm S (2006) Functions of neuronal P2Y receptors. Pflugers Arch 452:538–551

    PubMed  CAS  Google Scholar 

  23. von Kugelgen I (2006) Pharmacological profiles of cloned mammalian P2Y-receptor subtypes. Pharmacol Ther 110:415–432

    Google Scholar 

  24. Brunschweiger A, Muller CE (2006) P2 receptors activated by uracil nucleotides—an update. Curr Med Chem 13:289–312

    PubMed  CAS  Google Scholar 

  25. Khakh BS (2001) Molecular physiology of P2X receptors and ATP signalling at synapses. Nat Rev Neurosci 2:165–174

    PubMed  CAS  Google Scholar 

  26. Zhang XF, Han P, Faltynek CR, Jarvis MF, Shieh CC (2005) Functional expression of P2X7 receptors in non-neuronal cells of rat dorsal root ganglia. Brain Res 1052:63–70

    PubMed  CAS  Google Scholar 

  27. Lewis C, Neidhart S, Holy C, North RA, Buell G, Surprenant A (1995) Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature 377:432–435

    PubMed  CAS  Google Scholar 

  28. Collo G, North RA, Kawashima E, Merlo-Pich E, Neidhart S, Surprenant A, Buell G (1996) Cloning of P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels. J Neurosci 16:2495–2507

    PubMed  CAS  Google Scholar 

  29. Xiang Z, Bo X, Burnstock G (1998) Localization of ATP-gated P2X receptor immunoreactivity in rat sensory and sympathetic ganglia. Neurosci Lett 256:105–108

    PubMed  CAS  Google Scholar 

  30. Kobayashi K, Fukuoka T, Yamanaka H, Dai Y, Obata K, Tokunaga A, Noguchi K (2005) Differential expression patterns of MRNAs for P2X receptor subunits in neurochemically characterized dorsal root ganglion neurons in the rat. J Comp Neurol 481:377–390

    PubMed  CAS  Google Scholar 

  31. Ruan HZ, Birder LA, de Groat WC, Tai C, Roppolo J, Buffington CA, Burnstock G (2005) Localization of P2X and P2Y receptors in dorsal root ganglia of the cat. J Histochem Cytochem 53:1273–1282

    PubMed  CAS  Google Scholar 

  32. Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P, Egerton J, Murfin M, Richardson J, Peck WL, Grahames CB, Casula MA, Yiangou Y, Birch R, Anand P, Buell GN (2005) Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114:386–396

    PubMed  CAS  Google Scholar 

  33. Snider WD, McMahon SB (1998) Tackling pain at the source: new ideas about nociceptors. Neuron 20:629–632

    PubMed  CAS  Google Scholar 

  34. Molliver DC, Wright DE, Leitner ML, Parsadanian AS, Doster K, Wen D, Yan Q, Snider WD (1997) IB4-binding DRG neurons switch from NGF to GDNF dependence in early postnatal life. Neuron 19:849–861

    PubMed  CAS  Google Scholar 

  35. Bennett DL, Michael GJ, Ramachandran N, Munson JB, Averill S, Yan Q, McMahon SB, Priestley JV (1998) A distinct subgroup of small DRG cells express GDNF receptor components and GDNF is protective for these neurons after nerve injury. J Neurosci 18:3059–3072

    PubMed  CAS  Google Scholar 

  36. Vulchanova L, Riedl MS, Shuster SJ, Buell G, Surprenant A, North RA, Elde R (1997) Immunohistochemical study of the P2X2 and P2X3 receptor subunits in rat and monkey sensory neurons and their central terminals. Neuropharmacology 36:1229–1242

    PubMed  CAS  Google Scholar 

  37. Bradbury EJ, Burnstock G, McMahon SB (1998) The expression of P2X3 purinoreceptors in sensory neurons, effects of axotomy and glial-derived neurotrophic factor. Mol Cell Neurosci 12:256–268

    PubMed  CAS  Google Scholar 

  38. Chen CC, Akopian AN, Sivilotti L, Colquhoun D, Burnstock G, Wood JN (1995) A P2X purinoceptor expressed by a subset of sensory neurons. Nature 377:428–431

    PubMed  CAS  Google Scholar 

  39. Bland-Ward PA, Humphrey PP (1997) Acute nociception mediated by hindpaw P2X receptor activation in the rat. Br J Pharmacol 122:365–371

    PubMed  CAS  Google Scholar 

  40. Robertson SJ, Rae MG, Rowan EG, Kennedy C (1996) Characterization of a P2X-purinoceptor in cultured neurones of the rat dorsal root ganglia. Br J Pharmacol 118:951–956

    PubMed  CAS  Google Scholar 

  41. Cook SP, Vulchanova L, Hargreaves KM, Elde R, McCleskey EW (1997) Distinct ATP receptors on pain-sensing and stretch-sensing neurons. Nature 387:505–508

    PubMed  CAS  Google Scholar 

  42. Ueno S, Tsuda M, Iwanaga T, Inoue K (1999) Cell type-specific ATP-activated responses in rat dorsal root ganglion neurons. Br J Pharmacol 126:429–436

    PubMed  CAS  Google Scholar 

  43. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    PubMed  CAS  Google Scholar 

  44. Cockayne DA, Hamilton SG, Zhu QM, Dunn PM, Zhong Y, Novakovic S, Malmberg AB, Cain G, Berson A, Kassotakis L, Hedley L, Lachnit WG, Burnstock G, McMahon SB, Ford AP (2000) Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407:1011–1015

    PubMed  CAS  Google Scholar 

  45. Souslova V, Cesare P, Ding Y, Akopian AN, Stanfa L, Suzuki R, Carpenter K, Dickenson A, Boyce S, Hill R, Nebenuis-Oosthuizen D, Smith AJ, Kidd EJ, Wood JN (2000) Warm-coding deficits and aberrant inflammatory pain in mice lacking P2X3 receptors. Nature 407:1015–1017

    PubMed  CAS  Google Scholar 

  46. Vacca F, Amadio S, Sancesario G, Bernardi G, Volonte C (2004) P2X3 receptor localizes into lipid rafts in neuronal cells. J Neurosci Res 76:653–661

    PubMed  CAS  Google Scholar 

  47. Keller P, Simons K (1998) Cholesterol is required for surface transport of influenza virus hemagglutinin. J Cell Biol 140:1357–1367

    PubMed  CAS  Google Scholar 

  48. Tsui-Pierchala BA, Encinas M, Milbrandt J, Johnson EM Jr. (2002) Lipid rafts in neuronal signaling and function. Trends Neurosci 25:412–417

    PubMed  CAS  Google Scholar 

  49. Eriksson J, Bongenhielm U, Kidd E, Matthews B, Fried K (1998) Distribution of P2X3 receptors in the rat trigeminal ganglion after inferior alveolar nerve injury. Neurosci Lett 254:37–40

    PubMed  CAS  Google Scholar 

  50. Llewellyn-Smith IJ, Burnstock G (1998) Ultrastructural localization of P2X3 receptors in rat sensory neurons. Neuroreport 9:2545–2550

    Article  PubMed  CAS  Google Scholar 

  51. Virginio C, North RA, Surprenant A (1998) Calcium permeability and block at homomeric and heteromeric P2X2 and P2X3 receptors, and P2X receptors in rat nodose neurones. J Physiol 510(Pt 1):27–35

    PubMed  CAS  Google Scholar 

  52. Thomas S, Virginio C, North RA, Surprenant A (1998) The antagonist trinitrophenyl-ATP reveals co-existence of distinct P2X receptor channels in rat nodose neurones. J Physiol 509(Pt 2):411–417

    PubMed  CAS  Google Scholar 

  53. Krishtal O, Lozovaya N, Fedorenko A, Savelyev I, Chizhmakov I (2006) The agonists for nociceptors are ubiquitous, but the modulators are specific: P2X receptors in the sensory neurons are modulated by cannabinoids. Pflugers Arch 453:353–360

    PubMed  CAS  Google Scholar 

  54. Ruan HZ, Moules E, Burnstock G (2004) Changes in P2X3 purinoceptors in sensory ganglia of the mouse during embryonic and postnatal development. Histochem Cell Biol 122:539–551

    PubMed  CAS  Google Scholar 

  55. Petruska JC, Cooper BY, Johnson RD, Gu JG (2000) Distribution patterns of different P2x receptor phenotypes in acutely dissociated dorsal root ganglion neurons of adult rats. Exp Brain Res 134:126–132

    PubMed  CAS  Google Scholar 

  56. Grubb BD, Evans RJ (1999) Characterization of cultured dorsal root ganglion neuron P2X receptors. Eur J Neurosci 11:149–154

    PubMed  CAS  Google Scholar 

  57. Zhong Y, Dunn PM, Bardini M, Ford AP, Cockayne DA, Burnstock G (2001) Changes in P2X receptor responses of sensory neurons from P2X3-deficient mice. Eur J Neurosci 14:1784–1792

    PubMed  CAS  Google Scholar 

  58. Cockayne DA, Dunn PM, Zhong Y, Rong W, Hamilton SG, Knight GE, Ruan HZ, Ma B, Yip P, Nunn P, McMahon SB, Burnstock G, Ford AP (2005) P2X2 knockout mice and P2X2/P2X3 double knockout mice reveal a role for the P2X2 receptor subunit in mediating multiple sensory effects of ATP. J Physiol 567:621–639

    PubMed  CAS  Google Scholar 

  59. Jahr CE, Jessell TM (1983) ATP excites a subpopulation of rat dorsal horn neurones. Nature 304:730–733

    PubMed  CAS  Google Scholar 

  60. Li J, Perl ER (1995) ATP modulation of synaptic transmission in the spinal substantia gelatinosa. J Neurosci 15:3357–3365

    PubMed  CAS  Google Scholar 

  61. Shiokawa H, Nakatsuka T, Furue H, Tsuda M, Katafuchi T, Inoue K, Yoshimura M (2006) Direct excitation of deep dorsal horn neurones in the rat spinal cord by the activation of postsynaptic P2X receptors. J Physiol 573:753–763

    PubMed  CAS  Google Scholar 

  62. Collo G, Neidhart S, Kawashima E, Kosco-Vilbois M, North RA, Buell G (1997) Tissue distribution of the P2X7 receptor. Neuropharmacology 36:1277–1283

    PubMed  CAS  Google Scholar 

  63. Vulchanova L, Arvidsson U, Riedl M, Wang J, Buell G, Surprenant A, North RA, Elde R (1996) Differential distribution of two ATP-gated channels (P2X receptors) determined by immunocytochemistry. Proc Natl Acad Sci U S A 93:8063–8067

    PubMed  CAS  Google Scholar 

  64. Gu JG (2003) P2X receptor-mediated modulation of sensory transmission to the spinal cord dorsal horn. Neuroscientist 9:370–378

    PubMed  CAS  Google Scholar 

  65. Chen M, Gu JG (2005) A P2X receptor-mediated nociceptive afferent pathway to lamina I of the spinal cord. Mol Pain 1:4

    PubMed  Google Scholar 

  66. Vulchanova L, Riedl MS, Shuster SJ, Stone LS, Hargreaves KM, Buell G, Surprenant A, North RA, Elde R (1998) P2X3 is expressed by DRG neurons that terminate in inner lamina II. Eur J Neurosci 10:3470–3478

    PubMed  CAS  Google Scholar 

  67. Nakatsuka T, Furue H, Yoshimura M, Gu JG (2002) Activation of central terminal vanilloid receptor-1 receptors and alpha beta-methylene-ATP-sensitive P2X receptors reveals a converged synaptic activity onto the deep dorsal horn neurons of the spinal cord. J Neurosci 22;1228–1237

    PubMed  CAS  Google Scholar 

  68. Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424:778–783

    PubMed  CAS  Google Scholar 

  69. Inoue K (2006) ATP receptors of microglia involved in pain. Novartis Found Symp 276:263–272

    PubMed  CAS  Google Scholar 

  70. Okada M, Nakagawa T, Minami M, Satoh M (2002) Analgesic effects of intrathecal administration of P2Y nucleotide receptor agonists UTP and UDP in normal and neuropathic pain model rats. J Pharmacol Exp Ther 303:66–73

    PubMed  CAS  Google Scholar 

  71. Gerevich Z, Borvendeg SJ, Schroder W, Franke H, Wirkner K, Norenberg W, Furst S, Gillen C, Illes P (2004) Inhibition of N-type voltage-activated calcium channels in rat dorsal root ganglion neurons by P2Y receptors is a possible mechanism of ADP-induced analgesia. J Neurosci 24;797–807

    PubMed  CAS  Google Scholar 

  72. Gerevich Z, Illes P (2004) P2Y receptors and pain transmission. Purinergic Signalling 1:3–10

    CAS  PubMed  Google Scholar 

  73. Kobayashi K, Fukuoka T, Yamanaka H, Dai Y, Obata K, Tokunaga A, Noguchi K (2006) Neurons and glial cells differentially express P2Y receptor MRNAs in the rat dorsal root ganglion and spinal cord. J Comp Neurol 498:443–454

    PubMed  CAS  Google Scholar 

  74. Stucky CL, Medler KA, Molliver DC (2004) The P2Y agonist UTP activates cutaneous afferent fibers. Pain 109:36–44

    PubMed  CAS  Google Scholar 

  75. Yoshida K, Nakagawa T, Kaneko S, Akaike A, Satoh M (2002) Adenosine 5′-triphosphate inhibits slow depolarization induced by repetitive dorsal root stimulation via P2Y purinoceptors in substantia gelatinosa neurons of the adult rat spinal cord slices with the dorsal root attached. Neurosci Lett 320:121–124

    PubMed  CAS  Google Scholar 

  76. Alexander K, Niforatos W, Bianchi B, Burgard EC, Lynch KJ, Kowaluk EA, Jarvis MF, Van BT (1999) Allosteric modulation and accelerated resensitization of human P2X(3) receptors by Cibacron blue. J Pharmacol Exp Ther 291:1135–1142

    PubMed  CAS  Google Scholar 

  77. Lewis CJ, Surprenant A, Evans RJ (1998) 2′,3′-O-(2,4,6-trinitrophenyl) adenosine 5′-triphosphate (TNP-ATP)—a nanomolar affinity antagonist at rat mesenteric artery P2X receptor ion channels. Br J Pharmacol 124:1463–1466

    PubMed  CAS  Google Scholar 

  78. Hamilton SG, Warburton J, Bhattacharjee A, Ward J, McMahon SB (2000) ATP in human skin elicits a dose-related pain response which is potentiated under conditions of hyperalgesia. Brain 123(Pt 6):1238–1246

    PubMed  Google Scholar 

  79. Sokolova E, Skorinkin A, Moiseev I, Agrachev A, Nistri A, Giniatullin R (2006) Experimental and modeling studies of desensitization of P2X3 receptors. Mol Pharmacol 70:373–382

    PubMed  CAS  Google Scholar 

  80. Phillis JW, O’Regan MH, Perkins LM (1993) Adenosine 5′-triphosphate release from the normoxic and hypoxic in vivo rat cerebral cortex. Neurosci Lett 151:94–96

    PubMed  CAS  Google Scholar 

  81. Kuzmin AI, Lakomkin VL, Kapelko VI, Vassort G (1998) Interstitial ATP level and degradation in control and postmyocardial infarcted rats. Am J Physiol 275:C766–C771

    PubMed  CAS  Google Scholar 

  82. Tsuda M, Shigemoto-Mogami Y, Ueno S, Koizumi S, Ueda H, Iwanaga T, Inoue K (2002) Downregulation of P2X3 receptor-dependent sensory functions in A/J inbred mouse strain. Eur J Neurosci 15:1444–1450

    PubMed  Google Scholar 

  83. Jarvis MF, Burgard EC, McGaraughty S, Honore P, Lynch K, Brennan TJ, Subieta A, Van BT, Cartmell J, Bianchi B, Niforatos W, Kage K, Yu H, Mikusa J, Wismer CT, Zhu CZ, Chu K, Lee CH, Stewart AO, Polakowski J, Cox BF, Kowaluk E, Williams M, Sullivan J, Faltynek C (2002) A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat. Proc Natl Acad Sci U S A 99:17179–17184

    PubMed  CAS  Google Scholar 

  84. McGaraughty S, Jarvis MF (2005) Antinociceptive properties of a non-nucleotide P2X3/P2X2/3 receptor antagonist. Drug News Perspect 18:501–507

    PubMed  CAS  Google Scholar 

  85. Liang SD, Gao Y, Xu CS, Xu BH, Mu SN(2004) Effect of tetramethylpyrazine on acute nociception mediated by signaling of P2X receptor activation in rat. Brain Res 995:247–252

    PubMed  CAS  Google Scholar 

  86. Barclay J, Patel S, Dorn G, Wotherspoon G, Moffatt S, Eunson L, Abdel’al S, Natt F, Hall J, Winter J, Bevan S, Wishart W, Fox A, Ganju P (2002) Functional downregulation of P2X3 receptor subunit in rat sensory neurons reveals a significant role in chronic neuropathic and inflammatory pain. J Neurosci 22:8139–8147

    PubMed  CAS  Google Scholar 

  87. Tjølsen A, Berge OG, Hunskaar S, Rosland JH, Hole K (1992) The formalin test, an evaluation of the method. Pain 51:5–17

    PubMed  Google Scholar 

  88. Sawynok J, Reid A (1997) Peripheral adenosine 5′-triphosphate enhances nociception in the formalin test via activation of a purinergic P2X receptor. Eur J Pharmacol 330:115–121

    PubMed  CAS  Google Scholar 

  89. Jarvis MF, Wismer CT, Schweitzer E, Yu H, Van BT, Lynch KJ, Burgard EC, Kowaluk EA (2001) Modulation of BzATP and induced nociception: attenuation by the P2X receptor antagonist, TNP-ATP and enhancement by the P2X(3) allosteric modulator, Cibacron blue. Br J Pharmacol 132:259–269

    PubMed  CAS  Google Scholar 

  90. Tsuda M, Ueno S, Inoue K (1999) Evidence for the involvement of spinal endogenous ATP and P2X receptors in nociceptive responses caused by formalin and capsaicin in mice. Br J Pharmacol 128:1497–1504

    PubMed  CAS  Google Scholar 

  91. Tsuda M, Ueno S, Inoue K (1999) In vivo pathway of thermal hyperalgesia by intrathecal administration of alpha,beta-methylene ATP in mouse spinal cord: involvement of the glutamate-NMDA receptor system. Br J Pharmacol 127:449–456

    PubMed  CAS  Google Scholar 

  92. Nakatsuka T, Gu JG (2001) ATP P2X receptor-mediated enhancement of glutamate release and evoked EPSCs in dorsal horn neurons of the rat spinal cord. J Neurosci 21:6522–6531

    PubMed  CAS  Google Scholar 

  93. Nakatsuka T, Tsuzuki K, Ling JX, Sonobe H, Gu JG (2003) Distinct roles of P2X receptors in modulating glutamate release at different primary sensory synapses in rat spinal cord. J Neurophysiol 89:3243–3252

    PubMed  CAS  Google Scholar 

  94. Wismer CT, Faltynek CR, Jarvis MF, McGaraughty S (2003) Distinct neurochemical mechanisms are activated following administration of different P2X receptor agonists into the hindpaw of a rat. Brain Res 965:187–193

    PubMed  CAS  Google Scholar 

  95. Hamilton SG, Wade A, McMahon SB (1999) The effects of inflammation and inflammatory mediators on nociceptive behaviour induced by ATP analogues in the rat. Br J Pharmacol 126:326–332

    PubMed  CAS  Google Scholar 

  96. Gordon JL (1986) Extracellular ATP: effects, sources and fate. Biochem J 233:309–319

    PubMed  CAS  Google Scholar 

  97. Verghese MW, Kneisler TB, Boucheron JA (1996) P2U agonists induce chemotaxis and actin polymerization in human neutrophils and differentiated HL60 cells. J Biol Chem 271:15597–15601

    PubMed  CAS  Google Scholar 

  98. Bodin P, Burnstock G (1998) Increased release of ATP from endothelial cells during acute inflammation. Inflamm Res 47:351–354

    PubMed  CAS  Google Scholar 

  99. Bours MJ, Swennen EL, Di Virgilio F, Cronstein BN, Dagnelie PC (2006) Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 112:358–404

    PubMed  CAS  Google Scholar 

  100. Bleehen T, Hobbiger F, Keele CA (1976) Identification of algogenic substances in human erythrocytes. J Physiol 262:131–149

    PubMed  CAS  Google Scholar 

  101. Reeh PW, Steen KH (1996) Tissue acidosis in nociception and pain. Prog Brain Res 113:143–151

    PubMed  CAS  Google Scholar 

  102. Zimmermann K, Reeh PW, Averbeck B (2002) ATP can enhance the proton-induced CGRP release through P2Y receptors and secondary PGE(2) release in isolated rat dura mater. Pain 97:259–265

    PubMed  CAS  Google Scholar 

  103. King BF, Wildman SS, Ziganshina LE, Pintor J, Burnstock G (1997) Effects of extracellular pH on agonism and antagonism at a recombinant P2X2 receptor. Br J Pharmacol 121:1445–1453

    PubMed  CAS  Google Scholar 

  104. Nakazawa K, Liu M, Inoue K, Ohno Y (1997) pH dependence of facilitation by neurotransmitters and divalent cations of P2X2 purinoceptor/channels. Eur J Pharmacol 337:309–314

    PubMed  CAS  Google Scholar 

  105. Xu GY, Huang LY (2002) Peripheral inflammation sensitizes P2X receptor-mediated responses in rat dorsal root ganglion neurons. J Neurosci 22:93–102

    PubMed  CAS  Google Scholar 

  106. Ambalavanar R, Moritani M, Dessem D (2005) Trigeminal P2X3 receptor expression differs from dorsal root ganglion and is modulated by deep tissue inflammation. Pain 117:80–291

    Google Scholar 

  107. Ambalavanar R, Moritani M, Moutanni A, Gangula P, Yallampalli C, Dessem D (2006) Deep tissue inflammation upregulates neuropeptides and evokes nociceptive behaviors which are modulated by a neuropeptide antagonist. Pain 120:53–68

    PubMed  CAS  Google Scholar 

  108. Fabbretti E, D’Arco M, Fabbro A, Simonetti M, Nistri A, Giniatullin R (2006) Delayed upregulation of ATP P2X3 receptors of trigeminal sensory neurons by calcitonin gene-related peptide. J Neurosci 26:6163–6171

    PubMed  CAS  Google Scholar 

  109. Driessen B, Reimann W, Selve N, Friderichs E, Bultmann R (1994) Antinociceptive effect of intrathecally administered P2-purinoceptor antagonists in rats. Brain Res 666:182–188

    PubMed  CAS  Google Scholar 

  110. Stanfa LC, Kontinen VK, Dickenson AH (2000) Effects of spinally administered P2X receptor agonists and antagonists on the responses of dorsal horn neurones recorded in normal, carrageenan-inflamed and neuropathic rats. Br J Pharmacol 129:351–359

    PubMed  CAS  Google Scholar 

  111. Shinoda M, Ozaki N, Asai H, Nagamine K, Sugiura Y (2005) Changes in P2X3 receptor expression in the trigeminal ganglion following monoarthritis of the temporomandibular joint in rats. Pain 116:42–51

    PubMed  CAS  Google Scholar 

  112. Dai Y, Fukuoka T, Wang H, Yamanaka H, Obata K, Tokunaga A, Noguchi K (2004) Contribution of sensitized P2X receptors in inflamed tissue to the mechanical hypersensitivity revealed by phosphorylated ERK in DRG neurons. Pain 108:258–266

    PubMed  CAS  Google Scholar 

  113. Hamilton SG, McMahon SB (2000) ATP as a peripheral mediator of pain. J Auton Nerv Syst 81:187–194

    PubMed  CAS  Google Scholar 

  114. Dowd E, McQueen DS, Chessell IP, Humphrey PP (1998) P2X receptor-mediated excitation of nociceptive afferents in the normal and arthritic rat knee joint. Br J Pharmacol 125:341–346

    PubMed  CAS  Google Scholar 

  115. Honore P, Kage K, Mikusa J, Watt AT, Johnston JF, Wyatt JR, Faltynek CR, Jarvis MF, Lynch K (2002) Analgesic profile of intrathecal P2X(3) antisense oligonucleotide treatment in chronic inflammatory and neuropathic pain states in rats. Pain 99:11–19

    PubMed  CAS  Google Scholar 

  116. Dell’Antonio G, Quattrini A, Cin ED, Fulgenzi A, Ferrero ME (2002) Relief of inflammatory pain in rats by local use of the selective P2X7 ATP receptor inhibitor, oxidized ATP. Arthritis Rheum 46:3378–3385

    PubMed  CAS  Google Scholar 

  117. Dell’Antonio G, Quattrini A, Dal CE, Fulgenzi A, Ferrero ME (2002) Antinociceptive effect of a new P(2Z)/P2X7 antagonist, oxidized ATP, in arthritic rats. Neurosci Lett 327:87–90

    PubMed  CAS  Google Scholar 

  118. Labasi JM, Petrushova N, Donovan C, McCurdy S, Lira P, Payette MM, Brissette W, Wicks JR, Audoly L, Gabel CA (2002) Absence of the P2X7 receptor alters leukocyte function and attenuates an inflammatory response. J Immunol 168:6436–6445

    PubMed  CAS  Google Scholar 

  119. Woolf CJ, Ma QP, Allchorne A, Poole S (1996) Peripheral cell types contributing to the hyperalgesic action of nerve growth factor in inflammation. J Neurosci 16:2716–2723

    PubMed  CAS  Google Scholar 

  120. Woolf CJ, Allchorne A, Safieh-Garabedian B, Poole S (1997) Cytokines, nerve growth factor and inflammatory hyperalgesia: the contribution of tumour necrosis factor alpha. Br J Pharmacol 121:417–424

    PubMed  CAS  Google Scholar 

  121. Samad TA, Moore KA, Sapirstein A, Billet S, Allchorne A, Poole S, Bonventre JV, Woolf CJ (2001) Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature 410:471–475

    PubMed  CAS  Google Scholar 

  122. Sawynok J (2006) Adenosine and ATP receptors. Handb Exp Pharmacol 177:309–328

    Article  Google Scholar 

  123. Ferrari D, Chiozzi P, Falzoni S, Dal SM, Collo G, Buell G, DiVirgilio F (1997) ATP-mediated cytotoxicity in microglial cells. Neuropharmacology 36:1295–1301

    PubMed  CAS  Google Scholar 

  124. Visentin S, Renzi M, Frank C, Greco A, Levi G (1999) Two different ionotropic receptors are activated by ATP in rat microglia. J Physiol 519:723–736

    PubMed  CAS  Google Scholar 

  125. Watkins LR, Maier SF (2002) Beyond neurons: evidence that immune and glial cells contribute to pathological pain states. Physiol Rev 82:981–1011

    PubMed  CAS  Google Scholar 

  126. Farber K, Kettenmann H (2005) Physiology of microglial cells. Brain Res Brain Res Rev 48:133–143

    PubMed  Google Scholar 

  127. Paukert M, Osteroth R, Geisler HS, Brandle U, Glowatzki E, Ruppersberg JP, Grunder S (2001) Inflammatory mediators potentiate ATP-gated channels through the P2X(3) subunit. J Biol Chem 276:21077–21082

    PubMed  CAS  Google Scholar 

  128. Wildman SS, King BF, Burnstock G (1997) Potentiation of ATP-responses at a recombinant P2X2 receptor by neurotransmitters and related substances. Br J Pharmacol 120:221–224

    PubMed  CAS  Google Scholar 

  129. Amaya F, Wang H, Costigan M, Allchorne AJ, Hatcher JP, Egerton J, Stean T, Morissset V, Grose D, Chessell IP, Tate S, Green PJ, Woolf CJ (2006) The voltage-gated sodium channel Na(v)1.9 is an effector of peripheral inflammatory pain hypersensitivity. J Neurosci 26:12852–12860

    PubMed  CAS  Google Scholar 

  130. Ji RR, Befort K, Brenner GJ, Woolf CJ (2002) ERK MAP kinase activation in superficial spinal cord neurons induces prodynorphin and NK-1 upregulation and contributes to persistent inflammatory pain hypersensitivity. J Neurosci 22:478–485

    PubMed  CAS  Google Scholar 

  131. Ji RR, Samad TA, Jin SX, Schmoll R, Woolf CJ (2002) P38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 36:57–68

    PubMed  CAS  Google Scholar 

  132. Ramer MS, Bradbury EJ, McMahon SB (2001) Nerve growth factor induces P2X(3) expression in sensory neurons. J Neurochem 77:864–875

    PubMed  CAS  Google Scholar 

  133. King BF, Liu M, Pintor J, Gualix J, Miras-Portugal MT, Burnstock G (1999) Diinosine pentaphosphate (IP5I) is a potent antagonist at recombinant rat P2X1 receptors. Br J Pharmacol 128:981–988

    PubMed  CAS  Google Scholar 

  134. Dery O, Corvera CU, Steinhoff M, Bunnett NW (1998) Proteinase-activated receptors, novel mechanisms of signaling by serine proteases. Am J Physiol 274:C1429–C1452

    PubMed  CAS  Google Scholar 

  135. Steinhoff M, Vergnolle N, Young SH, Tognetto M, Amadesi S, Ennes HS, Trevisani M, Hollenberg MD, Wallace JL, Caughey GH, Mitchell SE, Williams LM, Geppetti P, Mayer EA, Bunnett NW (2000) Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat Med 6:151–158

    PubMed  CAS  Google Scholar 

  136. Zhu WJ, Dai Y, Fukuoka T, Yamanaka H, Kobayashi K, Obata K, Wang S, Noguchi K (2006) Agonist of proteinase-activated receptor 2 increases painful behavior produced by alpha, beta-methylene adenosine 5′-triphosphate. Neuroreport 17:1257–1261

    PubMed  CAS  Google Scholar 

  137. Shimizu I, Iida T, Guan Y, Zhao C, Raja SN, Jarvis MF, Cockayne DA, Caterina MJ (2005) Enhanced thermal avoidance in mice lacking the ATP receptor P2X3. Pain 116:96–108

    PubMed  CAS  Google Scholar 

  138. Fukui M, Takishita A, Zhang N, Nakagawa T, Minami M, Satoh M (2004) Involvement of locus coeruleus noradrenergic neurons in supraspinal antinociception by alpha,beta-methylene-ATP in rats. J Pharmacol Sci 94:153–160

    PubMed  CAS  Google Scholar 

  139. Fukui M, Nakagawa T, Minami M, Satoh M, Kaneko S (2006) Inhibitory role of supraspinal P2X3/P2X2/3 subtypes on nociception in rats. Mol Pain 2:19

    PubMed  Google Scholar 

  140. Baron R (2006) Mechanisms of disease: neuropathic pain—a clinical perspective. Nat Clin Pract Neurol 2:95–106

    PubMed  Google Scholar 

  141. Chen Y, Shu Y, Zhao Z (1999) Ectopic purinergic sensitivity develops at sites of chronic nerve constriction injury in rat. Neuroreport 10:2779–2782

    Article  PubMed  CAS  Google Scholar 

  142. Park SK, Chung K, Chung JM (2000) Effects of purinergic and adrenergic antagonists in a rat model of painful peripheral neuropathy. Pain 87:171–179

    PubMed  CAS  Google Scholar 

  143. Chen Y, Li GW, Wang C, Gu Y, Huang LY (2005) Mechanisms underlying enhanced P2X receptor-mediated responses in the neuropathic pain state. Pain 119:38–48

    PubMed  CAS  Google Scholar 

  144. Novakovic SD, Kassotakis LC, Oglesby IB, Smith JA, Eglen RM, Ford AP, Hunter JC (1999) Immunocytochemical localization of P2X3 purinoceptors in sensory neurons in naive rats and following neuropathic injury. Pain 80:273–282

    PubMed  CAS  Google Scholar 

  145. Tsuzuki K, Kondo E, Fukuoka T, Yi D, Tsujino H, Sakagami M, Noguchi K (2001) Differential regulation of P2X(3) MRNA expression by peripheral nerve injury in intact and injured neurons in the rat sensory ganglia. Pain 91:351–360

    PubMed  CAS  Google Scholar 

  146. Kage K, Niforatos W, Zhu CZ, Lynch KJ, Honore P, Jarvis MF (2002) Alteration of dorsal root ganglion P2X3 receptor expression and function following spinal nerve ligation in the rat. Exp Brain Res 147:511–519

    PubMed  CAS  Google Scholar 

  147. Yiangou Y, Facer P, Birch R, Sangameswaran L, Eglen R, Anand P (2000) P2X3 receptor in injured human sensory neurons. Neuroreport 11:993–996

    PubMed  CAS  Google Scholar 

  148. Dorn G, Patel S, Wotherspoon G, Hemmings-Mieszczak M, Barclay J, Natt FJ, Martin P, Bevan S, Fox A, Ganju P, Wishart W, Hall J (2004) SiRNA relieves chronic neuropathic pain. Nucleic Acids Res 32:e49

    PubMed  Google Scholar 

  149. Sharp CJ, Reeve AJ, Collins SD, Martindale JC, Summerfield SG, Sargent BS, Bate ST, Chessell IP (2006) Investigation into the role of P2X(3)/P2X(2/3) receptors in neuropathic pain following chronic constriction injury in the rat: an electrophysiological study. Br J Pharmacol 148:845–852

    PubMed  CAS  Google Scholar 

  150. Seltzer Z, Dubner R, Shir Y (1990) A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 43:205–218

    PubMed  CAS  Google Scholar 

  151. Dowman R, Darcey T, Barkan H, Thadani V, Roberts D (2007) Human intracranially-recorded cortical responses evoked by painful electrical stimulation of the sural nerve. Neuroimage 34:743–763

    PubMed  CAS  Google Scholar 

  152. Schwab JM, Guo L, Schluesener HJ (2005) Spinal cord injury induces early and persistent lesional P2X4 receptor expression. J Neuroimmunol 163:185–189

    PubMed  CAS  Google Scholar 

  153. Rabchevsky AG, Degos JD, Dreyfus PA (1999) Peripheral injections of Freund’s adjuvant in mice provoke leakage of serum proteins through the blood–brain barrier without inducing reactive gliosis. Brain Res 832:84–96

    PubMed  CAS  Google Scholar 

  154. Burnstock G, Satchell DG, Smythe A (1972) A comparison of the excitatory and inhibitory effects of non-adrenergic, non-cholinergic nerve stimulation and exogenously applied ATP on a variety of smooth muscle preparations from different vertebrate species. Br J Pharmacol 46:234–242

    PubMed  CAS  Google Scholar 

  155. Birder LA, Kanai AJ, de Groat WC, Kiss S, Nealen ML, Burke NE, Dineley KE, Watkins S, Reynolds IJ, Caterina MJ (2001) Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells. Proc Natl Acad Sci U S A 98;13396–13401

    PubMed  CAS  Google Scholar 

  156. Cervero F, Laird JM (2004) Understanding the signaling and transmission of visceral nociceptive events. J Neurobiol 61:45–54

    PubMed  CAS  Google Scholar 

  157. Namasivayam S, Eardley I, Morrison JF (1999) Purinergic sensory neurotransmission in the urinary bladder: an in vitro study in the rat. BJU Int 84:854–860

    PubMed  CAS  Google Scholar 

  158. Studeny S, Torabi A, Vizzard MA (2005) P2X2 and P2X3 receptor expression in postnatal and adult rat urinary bladder and lumbosacral spinal cord. Am J Physiol Regul Integr Comp Physiol 289:R1155–R1168

    PubMed  CAS  Google Scholar 

  159. Vlaskovska M, Kasakov L, Rong W, Bodin P, Bardini M, Cockayne DA, Ford AP, Burnstock G (2001) P2X3 knock-out mice reveal a major sensory role for urothelially released ATP. J Neurosci 21:5670–5677

    PubMed  CAS  Google Scholar 

  160. Tempest HV, Dixon AK, Turner WH, Elneil S, Sellers LA, Ferguson DR (2004) P2X and P2X receptor expression in human bladder urothelium and changes in interstitial cystitis. BJU Int 93:1344–1348

    PubMed  CAS  Google Scholar 

  161. Sun Y, Chai TC (2004) Up-regulation of P2X3 receptor during stretch of bladder urothelial cells from patients with interstitial cystitis. J Urol 171:448–452

    PubMed  CAS  Google Scholar 

  162. Borvendeg SJ, Al-Khrasani M, Rubini P, Fischer W, Allgaier C, Wirkner K, Himmel HM, Gillen C, Illes P (2003) Subsensitivity of P2X but not vanilloid 1 receptors in dorsal root ganglia of rats caused by cyclophosphamide cystitis. Eur J Pharmacol 474:71–75

    PubMed  CAS  Google Scholar 

  163. Poole DP, Castelucci P, Robbins HL, Chiocchetti R, Furness JB (2002) The distribution of P2X3 purine receptor subunits in the guinea pig enteric nervous system. Auton Neurosci 101:39–47

    PubMed  CAS  Google Scholar 

  164. Robinson DR, McNaughton PA, Evans ML, Hicks GA (2004) Characterization of the primary spinal afferent innervation of the mouse colon using retrograde labelling. Neurogastroenterol Motil 16:113–124

    PubMed  CAS  Google Scholar 

  165. Camilleri M (2001) Pathophysiology in irritable bowel syndrome. Drug News Perspect 14:268–278

    PubMed  CAS  Google Scholar 

  166. Yiangou Y, Facer P, Baecker PA, Ford AP, Knowles CH, Chan CL, Williams NS, Anand P (2001) ATP-gated ion channel P2X(3) is increased in human inflammatory bowel disease. Neurogastroenterol Motil 13:365–369

    PubMed  CAS  Google Scholar 

  167. Kirkup AJ, Booth CE, Chessell IP, Humphrey PP, Grundy D (1999) Excitatory effect of P2X receptor activation on mesenteric afferent nerves in the anaesthetised rat. J Physiol 520:551–563

    PubMed  CAS  Google Scholar 

  168. Wynn G, Rong W, Xiang Z, Burnstock G (2003) Purinergic mechanisms contribute to mechanosensory transduction in the rat colorectum. Gastroenterology 125:1398–1409

    PubMed  CAS  Google Scholar 

  169. Wynn G, Ma B, Ruan HZ, Burnstock G (2004) Purinergic component of mechanosensory transduction is increased in a rat model of colitis. Am J Physiol Gastrointest Liver Physiol 287:G647–G657

    PubMed  CAS  Google Scholar 

  170. Page AJ, Martin CM, Blackshaw LA (2002) Vagal mechanoreceptors and chemoreceptors in mouse stomach and esophagus. Neurophysiol 87:2095–2103

    CAS  Google Scholar 

  171. Brierley SM, Carter R, Jones W, III, Xu L, Robinson DR, Hicks GA, Gebhart GF, Blackshaw LA (2005) Differential chemosensory function and receptor expression of splanchnic and pelvic colonic afferents in mice. J Physiol 567:267–281

    PubMed  CAS  Google Scholar 

  172. Honore P, Mikusa J, Bianchi B, McDonald H, Cartmell J, Faltynek C, Jarvis MF (2002) TNP-ATP, a potent P2X3 receptor antagonist, blocks acetic acid-induced abdominal constriction in mice, comparison with reference analgesics. Pain 96:99–105

    PubMed  CAS  Google Scholar 

  173. Durham PL (2006) Calcitonin gene-related peptide (CGRP) and migraine. Headache 46(Suppl. 1):S3–S8

    PubMed  Google Scholar 

  174. Juhasz G, Zsombok T, Jakab B, Nemeth J, Szolcsanyi J, Bagdy G (2005) Sumatriptan causes parallel decrease in plasma calcitonin gene-related peptide (CGRP) concentration and migraine headache during nitroglycerin induced migraine attack. Cephalalgia 25:179–183

    PubMed  CAS  Google Scholar 

  175. Natura G, von Banchet GS, Schaible HG (2005) Calcitonin gene-related peptide enhances TTX-resistant sodium currents in cultured dorsal root ganglion neurons from adult rats. Pain 116:194–204

    PubMed  CAS  Google Scholar 

  176. White N, Burnstock G (2006) P2 receptors and cancer. Trends Pharmacol Sci 27:211–217

    PubMed  CAS  Google Scholar 

  177. Maehara Y, Kusumoto H, Anai H, Kusumoto T, Sugimachi K (1987) Human tumor tissues have higher ATP contents than normal tissues. Clin Chim Acta 169:341–343

    PubMed  CAS  Google Scholar 

  178. Dang K, Bielfeldt K, Lamb K, Gebhart GF (2005) Gastric ulcers evoke hyperexcitability and enhance P2X receptor function in rat gastric sensory neurons. J Neurophysiol 93:3112–3119

    PubMed  CAS  Google Scholar 

  179. Cain DM, Wacnik PW, Eikmeier L, Beitz A, Wilcox GL, Simone DA (2001) Functional interactions between tumor and peripheral nerve in a model of cancer pain in the mouse. Pain Med 2:15–23

    PubMed  CAS  Google Scholar 

  180. Gilchrist LS, Cain DM, Harding-Rose C, Kov AN, Wendelschafer-Crabb G, Kennedy WR, Simone DA (2005) Re-organization of P2X3 receptor localization on epidermal nerve fibers in a murine model of cancer pain. Brain Res 1044:197–205

    PubMed  CAS  Google Scholar 

  181. Kennedy WR, Wendelschafer-Crabb G (1999) Utility of the skin biopsy method in studies of diabetic neuropathy. Electroencephalogr Clin Neurophysiol Suppl 50:553–559

    PubMed  CAS  Google Scholar 

  182. Nagamine K, Ozaki N, Shinoda M, Asai H, Nishiguchi H, Mitsudo K, Tohnai I, Ueda M, Sugiura Y (2006) Mechanical allodynia and thermal hyperalgesia induced by experimental squamous cell carcinoma of the lower gingiva in rats. J Pain 7:659–670

    PubMed  Google Scholar 

  183. Rong W, Burnstock G, Spyer KM (2000) P2X purinoceptor-mediated excitation of trigeminal lingual nerve terminals in an in vitro intra-arterially perfused rat tongue preparation. J Physiol 524:891–902

    PubMed  CAS  Google Scholar 

  184. Jones CA, Vial C, Sellers LA, Humphrey PPA, Evans RJ, Chessell IP (2004) Functional regulation of P2X6 receptors by n-linked glycosylation: identification of a novel αβ-methylene ATP-sensitive phenotype. Mol Pharmacol 65:979–985

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Wirkner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wirkner, K., Sperlagh, B. & Illes, P. P2X3 Receptor Involvement in Pain States. Mol Neurobiol 36, 165–183 (2007). https://doi.org/10.1007/s12035-007-0033-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-007-0033-y

Keywords

Navigation