Skip to main content

Advertisement

Log in

Noise-Induced Inner Hair Cell Ribbon Loss Disturbs Central Arc Mobilization: A Novel Molecular Paradigm for Understanding Tinnitus

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Increasing evidence shows that hearing loss is a risk factor for tinnitus and hyperacusis. Although both often coincide, a causal relationship between tinnitus and hyperacusis has not been shown. Currently, tinnitus and hyperacusis are assumed to be caused by elevated responsiveness in subcortical circuits. We examined both the impact of different degrees of cochlear damage and the influence of stress priming on tinnitus induction. We used (1) a behavioral animal model for tinnitus designed to minimize stress, (2) ribbon synapses in inner hair cells (IHCs) as a measure for deafferentation, (3) the integrity of auditory brainstem responses (ABR) to detect differences in stimulus-evoked neuronal activity, (4) the expression of the activity-regulated cytoskeletal protein, Arc, to identify long-lasting changes in network activity within the basolateral amygdala (BLA), hippocampal CA1, and auditory cortex (AC), and (5) stress priming to investigate the influence of corticosteroid on trauma-induced brain responses. We observed that IHC ribbon loss (deafferentation) leads to tinnitus when ABR functions remain reduced and Arc is not mobilized in the hippocampal CA1 and AC. If, however, ABR waves are functionally restored and Arc is mobilized, tinnitus does not occur. Both central response patterns were found to be independent of a profound threshold loss and could be shifted by the corticosterone level at the time of trauma. We, therefore, discuss the findings in the context of a history of stress that can trigger either an adaptive or nonadaptive brain response following injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lockwood AH, Salvi RJ, Burkard RF (2002) Tinnitus. N Engl J Med 347(12):904–910

    Article  PubMed  Google Scholar 

  2. Møller AR (2003) Pathophysiology of tinnitus. Otolaryngol Clin North Am 36(2):249–266, v-vi

    Article  PubMed  Google Scholar 

  3. Jastreboff PJ (2007) Tinnitus retraining therapy. Prog Brain Res 166:415–423

    Article  PubMed  CAS  Google Scholar 

  4. Zenner HP, Pfister M, Birbaumer N (2006) Tinnitus sensitization: sensory and psychophysiological aspects of a new pathway of acquired centralization of chronic tinnitus. Otol Neurotol 27(8):1054–1063

    Article  PubMed  Google Scholar 

  5. Puel JL, Guitton MJ (2007) Salicylate-induced tinnitus: molecular mechanisms and modulation by anxiety. Prog Brain Res 166:141–146

    Article  PubMed  CAS  Google Scholar 

  6. Leaver AM, Renier L, Chevillet MA, Morgan S, Kim HJ, Rauschecker JP (2011) Dysregulation of limbic and auditory networks in tinnitus. Neuron 69(1):33–43. doi:10.1016/j.neuron.2010.12.002

    Article  PubMed  CAS  Google Scholar 

  7. Meltser I, Tahera Y, Canlon B (2009) Glucocorticoid receptor and mitogen-activated protein kinases activity after restraint stress and acoustic trauma. J Neurotrauma 26(10):1835–1845

    Article  PubMed  Google Scholar 

  8. Langguth B, Salvi R, Elgoyhen AB (2009) Emerging pharmacotherapy of tinnitus. Expert Opin Emerg Drugs 14(4):687–702

    Article  PubMed  CAS  Google Scholar 

  9. Kim DK, Park SN, Kim HM, Son HR, Kim NG, Park KH, Yeo SW (2011) Prevalence and significance of high-frequency hearing loss in subjectively normal-hearing patients with tinnitus. Ann Otol Rhinol Laryngol 120(8):523–528

    PubMed  Google Scholar 

  10. Roberts LE, Eggermont JJ, Caspary DM, Shore SE, Melcher JR, Kaltenbach JA (2010) Ringing ears: the neuroscience of tinnitus. J Neurosci 30(45):14972–14979. doi:10.1523/JNEUROSCI.4028-10.2010

    Article  PubMed  CAS  Google Scholar 

  11. Weisz N, Hartmann T, Dohrmann K, Schlee W, Noreña A (2006) High-frequency tinnitus without hearing loss does not mean absence of deafferentation. Hear Res 222(1–2):108–114

    Article  PubMed  Google Scholar 

  12. Geven LI, de Kleine E, Free RH, van Dijk P (2011) Contralateral suppression of otoacoustic emissions in tinnitus patients. Otol Neurotol 32(2):315–321. doi:10.1097/MAO.0b013e3181fcf180

    Article  PubMed  Google Scholar 

  13. Bauer CA, Brozoski TJ, Myers K (2007) Primary afferent dendrite degeneration as a cause of tinnitus. J Neurosci Res 85(7):1489–1498

    Article  PubMed  CAS  Google Scholar 

  14. Knipper M, Müller M, Zimmermann U (2012) Molecular mechanism of tinnitus. In: Fay RR, Popper AN, Eggermont JJ (eds) Springer handbook of auditory research: neural correlates of tinnitus. Springer, New York

  15. Knipper M, Zimmermann U, Müller M (2010) Molecular aspects of tinnitus. Hear Res 266(1–2):60–69. doi:10.1016/j.heares.2009.07.013

    Article  PubMed  CAS  Google Scholar 

  16. Baguley DM (2003) Hyperacusis. J R Soc Med 96(12):582–585

  17. Gu JW, Halpin CF, Nam EC, Levine RA, Melcher JR (2010) Tinnitus, diminished sound-level tolerance, and elevated auditory activity in humans with clinically normal hearing sensitivity. J Neurophysiol 104(6):3361–3370. doi:10.1152/jn.00226.2010

    Article  PubMed  Google Scholar 

  18. Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29(45):14077–14085

    Article  PubMed  CAS  Google Scholar 

  19. Rauschecker JP, Leaver AM, Mühlau M (2010) Tuning out the noise: limbic–auditory interactions in tinnitus. Neuron 66(6):819–826. doi:10.1016/j.neuron.2010.04.032

    Article  PubMed  CAS  Google Scholar 

  20. Salvi RJ, Wang J, Ding D (2000) Auditory plasticity and hyperactivity following cochlear damage. Hear Res 147(1–2):261–274

    Article  PubMed  CAS  Google Scholar 

  21. Brozoski TJ, Bauer CA, Caspary DM (2002) Elevated fusiform cell activity in the dorsal cochlear nucleus of chinchillas with psychophysical evidence of tinnitus. J Neurosci 22(6):2383–2390

    PubMed  CAS  Google Scholar 

  22. Kaltenbach JA (2007) The dorsal cochlear nucleus as a contributor to tinnitus: mechanisms underlying the induction of hyperactivity. Prog Brain Res 166:89–106

    Article  PubMed  CAS  Google Scholar 

  23. Middleton JW, Kiritani T, Pedersen C, Turner JG, Shepherd GM, Tzounopoulos T (2011) Mice with behavioral evidence of tinnitus exhibit dorsal cochlear nucleus hyperactivity because of decreased GABAergic inhibition. Proc Natl Acad Sci USA 108(18):7601–7606. doi:10.1073/pnas.1100223108

    Article  PubMed  CAS  Google Scholar 

  24. Yang S, Weiner BD, Zhang LS, Cho SJ, Bao S (2011) Homeostatic plasticity drives tinnitus perception in an animal model. Proc Natl Acad Sci USA 108(36):14974–14979. doi:10.1073/pnas.1107998108

    Article  PubMed  CAS  Google Scholar 

  25. Dehmel S, Pradhan S, Koehler S, Bledsoe S, Shore S (2012) Noise overexposure alters long-term somatosensory–auditory processing in the dorsal cochlear nucleus—possible basis for tinnitus-related hyperactivity? J Neurosci 32(5):1660–1671. doi:10.1523/JNEUROSCI.4608-11.2012

    Article  PubMed  CAS  Google Scholar 

  26. Schaette R, Kempter R (2012) Computational models of neurophysiological correlates of tinnitus. Front Syst Neurosci 6:34. doi:10.3389/fnsys.2012.00034

    Article  PubMed  Google Scholar 

  27. Cai S, Ma WL, Young ED (2009) Encoding intensity in ventral cochlear nucleus following acoustic trauma: implications for loudness recruitment. J Assoc Res Otolaryngol 10(1):5–22. doi:10.1007/s10162-008-0142-y

    Article  PubMed  Google Scholar 

  28. Szczepaniak WS, Møller AR (1996) Evidence of neuronal plasticity within the inferior colliculus after noise exposure: a study of evoked potentials in the rat. Electroencephalogr Clin Neurophysiol 100(2):158–164

    Article  PubMed  CAS  Google Scholar 

  29. Turner JG (2007) Behavioral measures of tinnitus in laboratory animals. Prog Brain Res 166:147–156

    Article  PubMed  Google Scholar 

  30. Rüttiger L, Ciuffani J, Zenner HP, Knipper M (2003) A behavioral paradigm to judge acute sodium salicylate-induced sound experience in rats: a new approach for an animal model on tinnitus. Hear Res 180(1–2):39–50

    Article  PubMed  Google Scholar 

  31. Tan J, Rüttiger L, Panford-Walsh R, Singer W, Schulze H, Kilian SB, Hadjab S, Zimmermann U, Köpschall I, Rohbock K, Knipper M (2007) Tinnitus behavior and hearing function correlate with the reciprocal expression patterns of BDNF and Arg3.1/arc in auditory neurons following acoustic trauma. Neuroscience 145(2):715–726

    Article  PubMed  CAS  Google Scholar 

  32. Lin HW, Furman AC, Kujawa SG, Liberman MC (2011) Primary neural degeneration in the guinea pig cochlea after reversible noise-induced threshold shift. J Assoc Res Otolaryngol 12(5):605–616. doi:10.1007/s10162-011-0277-0

    Article  PubMed  Google Scholar 

  33. Melcher JR, Kiang NY (1996) Generators of the brainstem auditory evoked potential in cat. III: identified cell populations. Hear Res 93(1–2):52–71

    Article  PubMed  CAS  Google Scholar 

  34. Zuccotti A, Kuhn S, Johnson SL, Franz C, Singer W, Hecker D, Geisler HS, Köpschall I, Rohbock K, Gutsche K, Dlugaiczyk J, Schick B, Marcotti W, Rüttiger L, Schimmang T, Knipper M (2012) Lack of brain-derived neurotrophic factor hampers inner hair cell synapse physiology, but protects against noise induced hearing loss. J Neurosci 32:8545–8553

    Google Scholar 

  35. Bramham CR, Alme MN, Bittins M, Kuipers SD, Nair RR, Pai B, Panja D, Schubert M, Soule J, Tiron A, Wibrand K (2010) The Arc of synaptic memory. Exp Brain Res 200(2):125–140. doi:10.1007/s00221-009-1959-2

    Article  PubMed  Google Scholar 

  36. Gao M, Sossa K, Song L, Errington L, Cummings L, Hwang H, Kuhl D, Worley P, Lee HK (2010) A specific requirement of Arc/Arg3.1 for visual experience-induced homeostatic synaptic plasticity in mouse primary visual cortex. J Neurosci 30(21):7168–7178. doi:10.1523/JNEUROSCI.1067-10.2010

    Article  PubMed  CAS  Google Scholar 

  37. Korb E, Finkbeiner S (2012) Arc in synaptic plasticity: from gene to behavior. Trends Neurosci 34(11):591–598. doi:10.1016/j.tins.2011.08.007[doi]

    Article  Google Scholar 

  38. Kozlovsky N, Matar MA, Kaplan Z, Kotler M, Zohar J, Cohen H (2008) The immediate early gene Arc is associated with behavioral resilience to stress exposure in an animal model of posttraumatic stress disorder. Eur Neuropsychopharmacol 18(2):107–116. doi:10.1016/j.euroneuro.2007.04.009

    Article  PubMed  CAS  Google Scholar 

  39. Ons S, Rotllant D, Marin-Blasco IJ, Armario A (2010) Immediate–early gene response to repeated immobilization: Fos protein and arc mRNA levels appear to be less sensitive than c-fos mRNA to adaptation. Eur J Neurosci 31(11):2043–2052. doi:10.1111/j.1460-9568.2010.07242.x

    Article  PubMed  Google Scholar 

  40. Turner BB (1986) Tissue differences in the up-regulation of glucocorticoid-binding proteins in the rat. Endocrinology 118(3):1211–1216

    Article  PubMed  CAS  Google Scholar 

  41. Chavez CM, McGaugh JL, Weinberger NM (2009) The basolateral amygdala modulates specific sensory memory representations in the cerebral cortex. Neurobiol Learn Mem 91(4):382–392. doi:10.1016/j.nlm.2008.10.010

    Article  PubMed  Google Scholar 

  42. Knipper M, Zinn C, Maier H, Praetorius M, Rohbock K, Köpschall I, Zimmermann U (2000) Thyroid hormone deficiency before the onset of hearing causes irreversible damage to peripheral and central auditory systems. J Neurophysiol 83(5):3101–3112

    PubMed  CAS  Google Scholar 

  43. Schimmang T, Tan J, Müller M, Zimmermann U, Rohbock K, Köpschall I, Limberger A, Minichiello L, Knipper M (2003) Lack of Bdnf and TrkB signalling in the postnatal cochlea leads to a spatial reshaping of innervation along the tonotopic axis and hearing loss. Development 130(19):4741–4750

    Article  PubMed  CAS  Google Scholar 

  44. Engel J, Braig C, Rüttiger L, Kuhn S, Zimmermann U, Blin N, Sausbier M, Kalbacher H, Münkner S, Rohbock K, Ruth P, Winter H, Knipper M (2006) Two classes of outer hair cells along the tonotopic axis of the cochlea. Neuroscience 143:837–849

    Article  PubMed  CAS  Google Scholar 

  45. Blanchard RJ, McKittrick CR, Blanchard DC (2001) Animal models of social stress: effects on behavior and brain neurochemical systems. Physiol Behav 73(3):261–271

    Article  PubMed  CAS  Google Scholar 

  46. Haller J, Fuchs E, Halasz J, Makara GB (1999) Defeat is a major stressor in males while social instability is stressful mainly in females: towards the development of a social stress model in female rats. Brain Res Bull 50(1):33–39

    Article  PubMed  CAS  Google Scholar 

  47. Heidrych P, Zimmermann U, Kuhn S, Franz C, Engel J, Duncker SV, Hirt B, Pusch CM, Ruth P, Pfister M, Marcotti W, Blin N, Knipper M (2009) Otoferlin interacts with myosin VI: implications for maintenance of the basolateral synaptic structure of the inner hair cell. Hum Mol Genet 18:2779–2790

    Article  PubMed  CAS  Google Scholar 

  48. Panford-Walsh R, Singer W, Rüttiger L, Hadjab S, Tan J, Geisler HS, Zimmermann U, Köpschall I, Rohbock K, Vieljans A, Oestreicher E, Knipper M (2008) Midazolam reverses salicylate-induced changes in brain-derived neurotrophic factor and arg3.1 expression: implications for tinnitus perception and auditory plasticity. Mol Pharmacol 74(3):595–604. doi:10.1124/mol.108.046375

    Article  PubMed  CAS  Google Scholar 

  49. Ramirez-Amaya V, Vazdarjanova A, Mikhael D, Rosi S, Worley PF, Barnes CA (2005) Spatial exploration-induced Arc mRNA and protein expression: evidence for selective, network-specific reactivation. J Neurosci 25(7):1761–1768

    Article  PubMed  CAS  Google Scholar 

  50. Müller M (1991) Frequency representation in the rat cochlea. Hear Res 51(2):247–254

    Article  PubMed  Google Scholar 

  51. Doron NN, Ledoux JE, Semple MN (2002) Redefining the tonotopic core of rat auditory cortex: physiological evidence for a posterior field. J Comp Neurol 453(4):345–360

    Article  PubMed  Google Scholar 

  52. Sarro EC, Kotak VC, Sanes DH, Aoki C (2008) Hearing loss alters the subcellular distribution of presynaptic GAD and postsynaptic GABAA receptors in the auditory cortex. Cereb Cortex 18(12):2855–2867. doi:10.1093/cercor/bhn044

    Article  PubMed  Google Scholar 

  53. Yilmaz-Rastoder E, Miyamae T, Braun AE, Thiels E (2011) LTP- and LTD-inducing stimulations cause opposite changes in arc/arg3.1 mRNA level in hippocampal area CA1 in vivo. Hippocampus 21(12):1290–1301. doi:10.1002/hipo.20838

    Article  PubMed  CAS  Google Scholar 

  54. Wang H, Brozoski TJ, Turner JG, Ling L, Parrish JL, Hughes LF, Caspary DM (2009) Plasticity at glycinergic synapses in dorsal cochlear nucleus of rats with behavioral evidence of tinnitus. Neuroscience 164(2):747–759. doi:10.1016/j.neuroscience.2009.08.026

    Article  PubMed  CAS  Google Scholar 

  55. Vogler DP, Robertson D, Mulders WH (2011) Hyperactivity in the ventral cochlear nucleus after cochlear trauma. J Neurosci 31(18):6639–6645. doi:10.1523/JNEUROSCI.6538-10.2011

    Article  PubMed  CAS  Google Scholar 

  56. Glowatzki E, Fuchs PA (2002) Transmitter release at the hair cell ribbon synapse. Nat Neurosci 5(2):147–154

    Article  PubMed  CAS  Google Scholar 

  57. Buran BN, Strenzke N, Neef A, Gundelfinger ED, Moser T, Liberman MC (2010) Onset coding is degraded in auditory nerve fibers from mutant mice lacking synaptic ribbons. J Neurosci 30(22):7587–7597. doi:10.1523/JNEUROSCI.0389-10.2010

    Article  PubMed  CAS  Google Scholar 

  58. Johnson DH, Kiang NY (1976) Analysis of discharges recorded simultaneously from pairs of auditory nerve fibers. Biophys J 16(7):719–734

    Article  PubMed  CAS  Google Scholar 

  59. Schaette R, Kempter R (2009) Predicting tinnitus pitch from patients’ audiograms with a computational model for the development of neuronal hyperactivity. J Neurophysiol 101(6):3042–3052

    Article  PubMed  Google Scholar 

  60. Qiu C, Salvi R, Ding D, Burkard R (2000) Inner hair cell loss leads to enhanced response amplitudes in auditory cortex of unanesthetized chinchillas: evidence for increased system gain. Hear Res 139(1–2):153–171

    Article  PubMed  CAS  Google Scholar 

  61. Zeng FG (2012) An active loudness model suggesting tinnitus as increased central noise and hyperacusis as increased nonlinear gain. Hear Res. doi:10.1016/j.heares.2012.05.009

  62. Schaette R, McAlpine D (2011) Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci 31(38):13452–13457. doi:10.1523/JNEUROSCI.2156-11.2011

    Article  PubMed  CAS  Google Scholar 

  63. Malmierca M, Merchan M (2004) The auditory system. In: Paxinos G (ed) The rat nervous system. Academic, San Diego, pp 997–1082

    Google Scholar 

  64. Shepherd JD, Rumbaugh G, Wu J, Chowdhury S, Plath N, Kuhl D, Huganir RL, Worley PF (2006) Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 52(3):475–484

    Article  PubMed  CAS  Google Scholar 

  65. Guzowski JF, McNaughton BL, Barnes CA, Worley PF (1999) Environment-specific expression of the immediate–early gene Arc in hippocampal neuronal ensembles. Nat Neurosci 2(12):1120–1124

    Article  PubMed  CAS  Google Scholar 

  66. Pinaud R, Penner MR, Robertson HA, Currie RW (2001) Upregulation of the immediate early gene arc in the brains of rats exposed to environmental enrichment: implications for molecular plasticity. Brain Res Mol Brain Res 91(1–2):50–56

    Article  PubMed  CAS  Google Scholar 

  67. Beique JC, Na Y, Kuhl D, Worley PF, Huganir RL (2010) Arc-dependent synapse-specific homeostatic plasticity. Proc Natl Acad Sci U S A 108(2):816–821. doi:10.1073/pnas.1017914108

    Article  PubMed  Google Scholar 

  68. Kotak VC, Fujisawa S, Lee FA, Karthikeyan O, Aoki C, Sanes DH (2005) Hearing loss raises excitability in the auditory cortex. J Neurosci 25(15):3908–3918

    Article  PubMed  CAS  Google Scholar 

  69. Peebles CL, Yoo J, Thwin MT, Palop JJ, Noebels JL, Finkbeiner S (2010) Arc regulates spine morphology and maintains network stability in vivo. Proc Natl Acad Sci U S A 107(42):18173–18178. doi:10.1073/pnas.1006546107

    Article  PubMed  CAS  Google Scholar 

  70. Eggermont JJ, Roberts LE (2004) The neuroscience of tinnitus. Trends Neurosci 27(11):676–682

    Article  PubMed  CAS  Google Scholar 

  71. Noreña AJ, Tomita M, Eggermont JJ (2003) Neural changes in cat auditory cortex after a transient pure-tone trauma. J Neurophysiol 90(4):2387–2401

    Article  PubMed  Google Scholar 

  72. Schecklmann M, Vielsmeier V, Steffens T, Landgrebe M, Langguth B, Kleinjung T (2012) Relationship between audiometric slope and tinnitus pitch in tinnitus patients: insights into the mechanisms of tinnitus generation. PLoS One 7(4):e34878. doi:10.1371/journal.pone.0034878

    Article  PubMed  CAS  Google Scholar 

  73. Mangiamele LA, Thomson CJ, Lebonville CL, Burmeister SS (2010) Characterization of the plasticity-related gene, Arc, in the frog brain. Dev Neurobiol 70(12):813–825. doi:10.1002/dneu.20817

    Google Scholar 

  74. Hawley ML, Melcher JR, Fullerton BC (2005) Effects of sound bandwidth on fMRI activation in human auditory brainstem nuclei. Hear Res 204(1–2):101–110. doi:10.1016/j.heares.2005.01.005

    Article  PubMed  Google Scholar 

  75. Rajan R (1998) Receptor organ damage causes loss of cortical surround inhibition without topographic map plasticity. Nat Neurosci 1(2):138–143. doi:10.1038/388

    Article  PubMed  CAS  Google Scholar 

  76. Diesch E, Struve M, Rupp A, Ritter S, Hulse M, Flor H (2004) Enhancement of steady-state auditory evoked magnetic fields in tinnitus. Eur J Neurosci 19(4):1093–1104

    Article  PubMed  Google Scholar 

  77. Langers DR, de Kleine E, van Dijk P (2012) Tinnitus does not require macroscopic tonotopic map reorganization. Front Syst Neurosci 6:2. doi:10.3389/fnsys.2012.00002

    Google Scholar 

  78. Campeau S, Watson SJ (1997) Neuroendocrine and behavioral responses and brain pattern of c-fos induction associated with audiogenic stress. J Neuroendocrinol 9(8):577–588

    PubMed  CAS  Google Scholar 

  79. Karst H, Berger S, Erdmann G, Schutz G, Joëls M (2010) Metaplasticity of amygdalar responses to the stress hormone corticosterone. Proc Natl Acad Sci U S A 107(32):14449–14454. doi:10.1073/pnas.0914381107

    Article  PubMed  CAS  Google Scholar 

  80. Tasker JG, Di S, Malcher-Lopes R (2006) Minireview: rapid glucocorticoid signaling via membrane-associated receptors. Endocrinology 147(12):5549–5556. doi:10.1210/en.2006-0981

    Article  PubMed  CAS  Google Scholar 

  81. Groeneweg FL, Karst H, de Kloet ER, Joëls M (2011) Rapid non-genomic effects of corticosteroids and their role in the central stress response. J Endocrinol 209(2):153–167. doi:10.1530/JOE-10-0472

    Article  PubMed  CAS  Google Scholar 

  82. Richter-Levin G, Maroun M (2010) Stress and amygdala suppression of metaplasticity in the medial prefrontal cortex. Cereb Cortex 20(10):2433–2441. doi:10.1093/cercor/bhp311

    Article  PubMed  Google Scholar 

  83. Kozlovsky N, Matar MA, Kaplan Z, Zohar J, Cohen H (2009) A distinct pattern of intracellular glucocorticoid-related responses is associated with extreme behavioral response to stress in an animal model of post-traumatic stress disorder. Eur Neuropsychopharmacol 19(11):759–771. doi:10.1016/j.euroneuro.2009.04.009

    Article  PubMed  CAS  Google Scholar 

  84. Abraham WC, Bear MF (1996) Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci 19(4):126–130

    Article  PubMed  CAS  Google Scholar 

  85. Wang Y, Liberman MC (2002) Restraint stress and protection from acoustic injury in mice. Hear Res 165(1–2):96–102

    Article  PubMed  Google Scholar 

  86. Terakado M, Kumagami H, Takahashi H (2011) Distribution of glucocorticoid receptors and 11 beta-hydroxysteroid dehydrogenase isoforms in the rat inner ear. Hear Res 280(1–2):148–156. doi:10.1016/j.heares.2011.05.006

    Article  PubMed  CAS  Google Scholar 

  87. Yao X, Rarey KE (1996) Localization of the mineralocorticoid receptor in rat cochlear tissue. Acta Otolaryngol 116(3):493–496

    Article  PubMed  CAS  Google Scholar 

  88. Oitzl MS, Champagne DL, van der Veen R, de Kloet ER (2010) Brain development under stress: hypotheses of glucocorticoid actions revisited. Neurosci Biobehav Rev 34(6):853–866. doi:10.1016/j.neubiorev.2009.07.006

    Article  PubMed  CAS  Google Scholar 

  89. Knapman A, Kaltwasser SF, Martins-de-Souza D, Holsboer F, Landgraf R, Turck CW, Czisch M, Touma C (2012) Increased stress reactivity is associated with reduced hippocampal activity and neuronal integrity along with changes in energy metabolism. Eur J Neurosci 35(3):412–422. doi:10.1111/j.1460-9568.2011.07968.x

    Article  PubMed  Google Scholar 

  90. Hebert S, Lupien SJ (2007) The sound of stress: blunted cortisol reactivity to psychosocial stress in tinnitus sufferers. Neurosci Lett 411(2):138–142

    Article  PubMed  CAS  Google Scholar 

  91. Eriksson TM, Delagrange P, Spedding M, Popoli M, Mathe AA, Ogren SO, Svenningsson P (2012) Emotional memory impairments in a genetic rat model of depression: involvement of 5-HT/MEK/Arc signaling in restoration. Mol Psychiatry 17(2):173–184. doi:10.1038/mp.2010.131

    Article  PubMed  CAS  Google Scholar 

  92. Palop JJ, Chin J, Bien-Ly N, Massaro C, Yeung BZ, Yu GQ, Mucke L (2005) Vulnerability of dentate granule cells to disruption of arc expression in human amyloid precursor protein transgenic mice. J Neurosci 25(42):9686–9693

    Article  PubMed  CAS  Google Scholar 

  93. Wegenast-Braun BM, Fulgencio Maisch A, Eicke D, Radde R, Herzig MC, Staufenbiel M, Jucker M, Calhoun ME (2009) Independent effects of intra- and extracellular Abeta on learning-related gene expression. Am J Pathol 175(1):271–282. doi:10.2353/ajpath.2009.090044

    Article  PubMed  CAS  Google Scholar 

  94. Goel A, Lee HK (2007) Persistence of experience-induced homeostatic synaptic plasticity through adulthood in superficial layers of mouse visual cortex. J Neurosci 27(25):6692–6700. doi:10.1523/JNEUROSCI.5038-06.2007

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Marie Curie Research Training Network CavNET MRTN-CT-2006-035367, Deutsche Forschungsgemeinschaft DFG-Kni-316-4-1, and Hahn Stiftung (Index AG).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lukas Rüttiger or Marlies Knipper.

Additional information

Wibke Singer and Annalisa Zuccotti equally contributed to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 81 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singer, W., Zuccotti, A., Jaumann, M. et al. Noise-Induced Inner Hair Cell Ribbon Loss Disturbs Central Arc Mobilization: A Novel Molecular Paradigm for Understanding Tinnitus. Mol Neurobiol 47, 261–279 (2013). https://doi.org/10.1007/s12035-012-8372-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8372-8

Keywords

Navigation