Skip to main content
Log in

Ca2+ signaling initiated by canonical transient receptor potential channels in dendritic development

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

The spatial patterns of dendritic structures diverge in different types of neurons as adaptations to their unique functions. Although different intracellular mechanisms underlying dendritic morphogenesis have been suggested, it is evident that the elevation in intracellular Ca2+ levels plays a major role in the process. Canonical transient receptor potential (TRPC) channels, known to be non-selective Ca2+-permeable cation channels, act as environmental detectors to sense and transduce extracellular signals into different intracellular responses, including the regulation of dendritic growth, via Ca2+ influx. Here, we review recent advances in the understanding of Ca2+ signaling, especially signals mediated by Ca2+ influx via TRPC channels, and the underlying molecular events in dendritic development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lohmann C, Wong RO. Regulation of dendritic growth and plasticity by local and global calcium dynamics. Cell Calcium 2005, 37: 403–409.

    Article  CAS  PubMed  Google Scholar 

  2. Zheng JQ, Poo MM. Calcium signaling in neuronal motility. Ann Rev Cell Dev Biol 2007, 23: 375–404.

    Article  CAS  Google Scholar 

  3. Bloodgood BL, Sabatini BL. Ca2+ signaling in dendritic spines. Curr Opin Neurobiol 2007, 17: 345–351.

    Article  CAS  PubMed  Google Scholar 

  4. Higley MJ, Sabatini BL. Calcium signaling in dendrites and spines: practical and functional considerations. Neuron 2008, 59: 902–913.

    Article  CAS  PubMed  Google Scholar 

  5. Lohmann C, Myhr KL, Wong RO. Transmitter-evoked local calcium release stabilizes developing dendrites. Nature 2002, 418: 177–181.

    Article  CAS  PubMed  Google Scholar 

  6. Rajan I, Cline HT. Glutamate receptor activity is required for normal development of tectal cell dendrites in vivo. J Neurosci 1998, 18: 7836–7846.

    CAS  PubMed  Google Scholar 

  7. Jakowec MW, Fox AJ, Martin LJ, Kalb RG. Quantitative and qualitative changes in AMPA receptor expression during spinal cord development. Neuroscience 1995, 67: 893–907.

    Article  CAS  PubMed  Google Scholar 

  8. Redmond L, Kashani AH, Ghosh A. Calcium regulation of dendritic growth via CaM kinase IV and CREB-mediated transcription. Neuron 2002, 34: 999–1010.

    Article  CAS  PubMed  Google Scholar 

  9. Puram SV, Riccio A, Koirala S, Ikeuchi Y, Kim AH, Corfas G, et al. A TRPC5-regulated calcium signaling pathway controls dendrite patterning in the mammalian brain. Genes Dev 2011, 25: 2659–2673.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Cosens DJ, Manning A. Abnormal electroretinogram from a Drosophila mutant. Nature 1969, 224: 285–287.

    Article  CAS  PubMed  Google Scholar 

  11. Montell C. The TRP superfamily of cation channels. Sci STKE 2005, 2005: re3.

    PubMed  Google Scholar 

  12. Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels. Annu Rev Physiol 2006, 68: 619–647.

    Article  CAS  PubMed  Google Scholar 

  13. Tai Y, Feng S, Du W, Wang Y. Functional roles of TRPC channels in the developing brain. Pflugers Arch 2009, 458: 283–289.

    Article  CAS  PubMed  Google Scholar 

  14. Amaral MD, Pozzo-Miller L. TRPC3 channels are necessary for brain-derived neurotrophic factor to activate a nonselective cationic current and to induce dendritic spine formation. J Neurosci 2007, 27: 5179–5189.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Teilmann SC, Byskov AG, Pedersen PA, Wheatley DN, Pazour GJ, Christensen ST. Localization of transient receptor potential ion channels in primary and motile cilia of the female murine reproductive organs. Mol Reprod Dev 2005, 71: 444–452.

    Article  CAS  PubMed  Google Scholar 

  16. Shim S, Goh EL, Ge S, Sailor K, Yuan JP, Roderick HL, et al. XTRPC1-dependent chemotropic guidance of neuronal growth cones. Nat Neurosci 2005, 8: 730–735.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Wang GX, Poo MM. Requirement of TRPC channels in netrin-1-induced chemotropic turning of nerve growth cones. Nature 2005, 434: 898–904.

    Article  CAS  PubMed  Google Scholar 

  18. Tai Y, Feng S, Ge R, Du W, Zhang X, He Z, et al. TRPC6 channels promote dendritic growth via the CaMKIV-CREB pathway. J Cell Sci 2008, 121: 2301–2307.

    Article  CAS  PubMed  Google Scholar 

  19. He Z, Jia C, Feng S, Zhou K, Tai Y, Bai X, et al. TRPC5 channel is the mediator of neurotrophin-3 in regulating dendritic growth via CaMKIIα in rat hippocampal neurons. J Neurosci 2012, 32: 9383–9395.

    Article  CAS  PubMed  Google Scholar 

  20. Heiser JH, Schuwald AM, Sillani G, Ye L, Muller WE, Leuner K. TRPC6 channel-mediated neurite outgrowth in PC12 cells and hippocampal neurons involves activation of RAS/MEK/ERK, PI3K, and CAMKIV signaling. J Neurochem 2013, 127: 303–313.

    Article  CAS  PubMed  Google Scholar 

  21. Leuner K, Li W, Amaral MD, Rudolph S, Calfa G, Schuwald AM, et al. Hyperforin modulates dendritic spine morphology in hippocampal pyramidal neurons by activating Ca(2+)-permeable TRPC6 channels. Hippocampus 2013, 23: 40–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Amiri H, Schultz G, Schaefer M. FRET-based analysis of TRPC subunit stoichiometry. Cell Calcium 2003, 33: 463–470.

    Article  CAS  PubMed  Google Scholar 

  23. Hoenderop JG, Voets T, Hoefs S, Weidema F, Prenen J, Nilius B, et al. Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO J 2003, 22: 776–785.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Kedei N, Szabo T, Lile JD, Treanor JJ, Olah Z, Iadarola MJ, et al. Analysis of the native quaternary structure of vanilloid receptor 1. J Biol Chem 2001, 276: 28613–28619.

    Article  CAS  PubMed  Google Scholar 

  25. Kuzhikandathil EV, Wang H, Szabo T, Morozova N, Blumberg PM, Oxford GS. Functional analysis of capsaicin receptor (vanilloid receptor subtype 1) multimerization and agonist responsiveness using a dominant negative mutation. J Neurosci 2001, 21: 8697–8706.

    CAS  PubMed  Google Scholar 

  26. Wu D, Huang W, Richardson PM, Priestley JV, Liu M. TRPC4 in rat dorsal root ganglion neurons is increased after nerve injury and is necessary for neurite outgrowth. J Biol Chem 2008, 283: 416–426.

    Article  CAS  PubMed  Google Scholar 

  27. Heo DK, Chung WY, Park HW, Yuan JP, Lee MG, Kim JY. Opposite regulatory effects of TRPC1 and TRPC5 on neurite outgrowth in PC12 cells. Cell Signal 2012, 24: 899–906.

    Article  CAS  PubMed  Google Scholar 

  28. Confort C, Charrasse S, Clos J. Nerve growth factor enhances DNA synthesis in cultured cerebellar neuroblasts. Neuroreport 1991, 2: 566–568.

    Article  CAS  PubMed  Google Scholar 

  29. Pincus DW, DiCicco-Bloom E, Black IB. Role of voltage-sensitive calcium channels in mitogenic stimulation of neuroblasts. Brain Res 1991, 553: 211–214.

    Article  CAS  PubMed  Google Scholar 

  30. Sieber-Blum M. Role of the neurotrophic factors BDNF and NGF in the commitment of pluripotent neural crest cells. Neuron 1991, 6: 949–955.

    Article  CAS  PubMed  Google Scholar 

  31. Segal RA, Greenberg ME. Intracellular signaling pathways activated by neuropathic factors. Ann Rev Neurosci 1996, 19: 463–489.

    Article  CAS  PubMed  Google Scholar 

  32. McAllister AK, Lo DC, Katz LC. Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 1995, 15: 791–803.

    Article  CAS  PubMed  Google Scholar 

  33. Dijkhuizen PA, Ghosh A. Re gulation of dendritic growth by calcium and neurotrophin signaling. Progress in Brain Research 2005, 147: 15–27.

    Google Scholar 

  34. McFarlane S. Dendritic morphogenesis: building an arbor. Mol Neurobiol 2000, 22: 1–9.

    Article  CAS  PubMed  Google Scholar 

  35. Horch HW. Local effects of BDNF on dendritic growth. Rev Neurosci 2004, 15: 117–129.

    Article  CAS  PubMed  Google Scholar 

  36. Li W, Calfa G, Larimore J, Pozzo-Miller L. Activitydependent BDNF release and TRPC signaling is impaired in hippocampal neurons of Mecp2 mutant mice. Proc Natl Acad Sci U S A 2012, 109: 17087–17092.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Kumar S, Chakraborty S, Barbosa C, Brustovetsky T, Brustovetsky N, Obukhov AG. Mechanisms controlling neurite outgrowth in a pheochromocytoma cell line: the role of TRPC channels. J Cell Physiol 2012, 227: 1408–1419.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE. TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 2001, 29: 645–655.

    Article  CAS  PubMed  Google Scholar 

  39. Kim SJ, Kim YS, Yuan JP, Petralia RS, Worley PF, Linden DJ. Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature 2003, 426: 285–291.

    Article  CAS  PubMed  Google Scholar 

  40. Tozzi A, Bengtson CP, Longone P, Carignani C, Fusco FR, Bernardi G, et al. Involvement of transient receptor potentiallike channels in responses to mGluR-I activation in midbrain dopamine neurons. Eur J Neurosci 2003, 18: 2133–2145.

    Article  PubMed  Google Scholar 

  41. Kwan HY, Huang Y, Yao X. Regulati on of canonical transient receptor potential isoform 3 (TRPC3) channel by protein kinase G. Proc Natl Acad Sci U S A 2004, 101: 2625–2630.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Venkatachalam K, Zheng F, Gill DL. Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J Biol Chem 2003, 278: 29031–29040.

    Article  CAS  PubMed  Google Scholar 

  43. Hagenston AM, Bading H. Calcium sig naling in synapse-to-nucleus communication. Cold Spring Harb Perspect Biol 2011, 3: a004564.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yizheng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, S., He, Z., Li, H. et al. Ca2+ signaling initiated by canonical transient receptor potential channels in dendritic development. Neurosci. Bull. 31, 351–356 (2015). https://doi.org/10.1007/s12264-014-1511-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-014-1511-7

Keywords

Navigation