Skip to main content

Advertisement

Log in

Heat Shock Proteins in the Brain: Role of Hsp70, Hsp 27, and HO-1 (Hsp32) and Their Therapeutic Potential

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Heat shock proteins (Hsps) are induced by heat shock via heat shock factor proteins binding to heat shock elements in their promoters. Hsp70 is massively induced in response to misfolded proteins following cerebral ischemia in all cell types but is induced mainly in neurons in the ischemic penumbra. Overexpression of Hsp70 via transgenes and viruses or systemic administration of Hsp70 fusion proteins that allow it to cross the blood brain barrier protects the brain against ischemia in most reported studies. Hsp27 can exist as unphosphorylated large oligomers that prevent misfolded protein aggregates and improve cell survival. P-Hsp27 small oligomers bind specific protein targets to improve survival. In the brain, protein kinase D phosphorylates Hsp27 following ischemia which then binds apoptosis signal-regulating kinase 1 to prevent MKK4/7, c-Jun NH(2)-terminal kinase, and Jun-induced apoptosis, and decrease infarct volumes following focal cerebral ischemia. Heme oxygenase-1 (HO-1) metabolizes heme to carbon monoxide, ferrous ion, and biliverdin. CO activates cGMP to promote vasodilation, and biliverdin is converted to bilirubin which can serve as an anti-oxidant, both of which may contribute to the reported protective role of HO-1 in cerebral ischemia and subarachnoid hemorrhage. However, ferrous ion can react with hydrogen peroxide to produce pro-oxidant hydroxyl radicals which may explain the harmful role of HO-1 in intracerebral hemorrhage. Heat shock proteins as a class have great potential as treatments for cerebrovascular disease and have yet to be tested in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stetler RA, Gan Y, Zhang W, Liou AK, Gao Y, Cao G, et al. Heat shock proteins: cellular and molecular mechanisms in the central nervous system. Prog Neurobiol. 2010;92(2):184–211.

    Article  PubMed  CAS  Google Scholar 

  2. Stetler RA, Gao Y, Signore AP, Cao G, Chen J. HSP27: mechanisms of cellular protection against neuronal injury. Curr Mol Med. 2009;9(7):863–72.

    Article  PubMed  CAS  Google Scholar 

  3. Wagner KR, Sharp FR, Ardizzone TD, Lu A, Clark JF. Heme and iron metabolism: role in cerebral hemorrhage. J Cereb Blood Flow Metab. 2003;23(6):629–52.

    Article  PubMed  CAS  Google Scholar 

  4. Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science. 2002;295(5561):1852–8.

    Article  PubMed  CAS  Google Scholar 

  5. Machado P, Rostaing P, Guigonis JM, Renner M, Dumoulin A, Samson M, et al. Heat shock cognate protein 70 regulates gephyrin clustering. J Neurosci. 2011;31(1):3–14.

    Article  PubMed  CAS  Google Scholar 

  6. Lanneau D, Wettstein G, Bonniaud P, Garrido C. Heat shock proteins: cell protection through protein triage. Sci World J. 2010;10:1543–52.

    Article  CAS  Google Scholar 

  7. Gardner BM, Walter P. Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science. 2011;333(6051):1891–4.

    Article  PubMed  CAS  Google Scholar 

  8. Joly AL, Wettstein G, Mignot G, Ghiringhelli F, Garrido C. Dual role of heat shock proteins as regulators of apoptosis and innate immunity. J Innate Immun. 2010;2(3):238–47.

    Article  PubMed  CAS  Google Scholar 

  9. Ran R, Zhou G, Lu A, Zhang L, Tang Y, Rigby AC, et al. Hsp70 mutant proteins modulate additional apoptotic pathways and improve cell survival. Cell Stress Chaperones. 2004;9(3):229–42.

    Article  PubMed  CAS  Google Scholar 

  10. Ran R, Lu A, Zhang L, Tang Y, Zhu H, Xu H, et al. Hsp70 promotes TNF-mediated apoptosis by binding IKK gamma and impairing NF-kappa B survival signaling. Genes Dev. 2004;18(12):1466–81.

    Article  PubMed  CAS  Google Scholar 

  11. Giffard RG, Han RQ, Emery JF, Duan M, Pittet JF. Regulation of apoptotic and inflammatory cell signaling in cerebral ischemia: the complex roles of heat shock protein 70. Anesthesiology. 2008;109(2):339–48.

    Article  PubMed  CAS  Google Scholar 

  12. Kim N, Kim JY, Yenari MA. Anti-inflammatory properties and pharmacological induction of Hsp70 after brain injury. Inflammopharmacology. 2012;20(3):177–85.

    Article  PubMed  CAS  Google Scholar 

  13. Kim JY, Yenari MA. The immune modulating properties of the heat shock proteins after brain injury. Anat Cell Biol. 2013;46(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  14. Jego G, Hazoume A, Seigneuric R, Garrido C. Targeting heat shock proteins in cancer. Cancer Lett. 2013;332(2):275–85.

    Article  PubMed  CAS  Google Scholar 

  15. Sharp FR, Lu A, Tang Y, Millhorn DE. Multiple molecular penumbras after focal cerebral ischemia. J Cereb Blood Flow Metab. 2000;20(7):1011–32.

    Article  PubMed  CAS  Google Scholar 

  16. Matsumori Y, Northington FJ, Hong SM, Kayama T, Sheldon RA, Vexler ZS, et al. Reduction of caspase-8 and -9 cleavage is associated with increased c-FLIP and increased binding of Apaf-1 and Hsp70 after neonatal hypoxic/ischemic injury in mice overexpressing Hsp70. Stroke. 2006;37(2):507–12.

    Article  PubMed  CAS  Google Scholar 

  17. Rajdev S, Hara K, Kokubo Y, Mestril R, Dillmann W, Weinstein PR, et al. Mice overexpressing rat heat shock protein 70 are protected against cerebral infarction. Ann Neurol. 2000;47(6):782–91.

    Article  PubMed  CAS  Google Scholar 

  18. Lee SH, Kwon HM, Kim YJ, Lee KM, Kim M, Yoon BW. Effects of hsp70.1 gene knockout on the mitochondrial apoptotic pathway after focal cerebral ischemia. Stroke. 2004;35(9):2195–9.

    Article  PubMed  Google Scholar 

  19. Lu A, Ran R, Parmentier-Batteur S, Nee A, Sharp FR. Geldanamycin induces heat shock proteins in brain and protects against focal cerebral ischemia. J Neurochem. 2002;81(2):355–64.

    Article  PubMed  CAS  Google Scholar 

  20. Sun Y, Ouyang YB, Xu L, Chow AM, Anderson R, Hecker JG, et al. The carboxyl-terminal domain of inducible Hsp70 protects from ischemic injury in vivo and in vitro. J Cereb Blood Flow Metab. 2006;26(7):937–50.

    Article  PubMed  CAS  Google Scholar 

  21. Doeppner TR, Nagel F, Dietz GP, Weise J, Tonges L, Schwarting S, et al. TAT-Hsp70-mediated neuroprotection and increased survival of neuronal precursor cells after focal cerebral ischemia in mice. J Cereb Blood Flow Metab. 2009;29(6):1187–96.

    Article  PubMed  CAS  Google Scholar 

  22. Zhan X, Ander BP, Liao IH, Hansen JE, Kim C, Clements D, et al. Recombinant Fv-Hsp70 protein mediates neuroprotection after focal cerebral ischemia in rats. Stroke. 2010;41(3):538–43.

    Article  PubMed  CAS  Google Scholar 

  23. Doeppner TR, Ewert TA, Tonges L, Herz J, Zechariah A, ElAli A, et al. Transduction of neural precursor cells with TAT-heat shock protein 70 chaperone: therapeutic potential against ischemic stroke after intrastriatal and systemic transplantation. Stem Cells. 2012;30(6):1297–310.

    Article  PubMed  CAS  Google Scholar 

  24. Mohanan A, Deshpande S, Jamadarkhana PG, Kumar P, Gupta RC, Chauthaiwale V, et al. Delayed intervention in experimental stroke with TRC051384–a small molecule HSP70 inducer. Neuropharmacology. 2011;60(6):991–9.

    Article  PubMed  CAS  Google Scholar 

  25. Wettstein G, Bellaye PS, Micheau O, Bonniaud P. Small heat shock proteins and the cytoskeleton: an essential interplay for cell integrity? Int J Biochem Cell Biol. 2012;44(10):1680–6.

    Article  PubMed  CAS  Google Scholar 

  26. Acunzo J, Katsogiannou M, Rocchi P. Small heat shock proteins HSP27 (HspB1), alphaB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death. Int J Biochem Cell Biol. 2012;44(10):1622–31.

    Article  PubMed  CAS  Google Scholar 

  27. Stetler RA, Gao Y, Zhang L, Weng Z, Zhang F, Hu X, et al. Phosphorylation of HSP27 by protein kinase D is essential for mediating neuroprotection against ischemic neuronal injury. J Neurosci. 2012;32(8):2667–82.

    Article  PubMed  CAS  Google Scholar 

  28. van der Weerd L, Tariq Akbar M, Aron Badin R, Valentim LM, Thomas DL, Wells DJ, et al. Overexpression of heat shock protein 27 reduces cortical damage after cerebral ischemia. J Cereb Blood Flow Metab. 2010;30(4):849–56.

    Article  PubMed  Google Scholar 

  29. An JJ, Lee YP, Kim SY, Lee SH, Lee MJ, Jeong MS, et al. Transduced human PEP-1-heat shock protein 27 efficiently protects against brain ischemic insult. FEBS J. 2008;275(6):1296–308.

    Article  PubMed  CAS  Google Scholar 

  30. Syapin PJ. Regulation of haeme oxygenase-1 for treatment of neuroinflammation and brain disorders. Br J Pharmacol. 2008;155(5):623–40.

    Article  PubMed  CAS  Google Scholar 

  31. Shah ZA, Nada SE, Dore S. Heme oxygenase 1, beneficial role in permanent ischemic stroke and in Gingko biloba (EGb 761) neuroprotection. Neuroscience. 2011;180:248–55.

    Article  PubMed  CAS  Google Scholar 

  32. Wang J, Dore S. Heme oxygenase-1 exacerbates early brain injury after intracerebral haemorrhage. Brain. 2007;130(Pt 6):1643–52.

    Article  PubMed  Google Scholar 

  33. Turner CP, Bergeron M, Matz P, Zegna A, Noble LJ, Panter SS, et al. Heme oxygenase-1 is induced in glia throughout brain by subarachnoid hemoglobin. J Cereb Blood Flow Metab. 1998;18(3):257–73.

    Article  PubMed  CAS  Google Scholar 

  34. Ogawa T, Hanggi D, Wu Y, Michiue H, Tomizawa K, Ono S, et al. Protein therapy using heme-oxygenase-1 fused to a polyarginine transduction domain attenuates cerebral vasospasm after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2011;31(11):2231–42.

    Article  PubMed  CAS  Google Scholar 

  35. Shimada Y, Tsunoda H, Zang L, Hirano M, Oka T, Tanaka T. Synergistic induction of heme oxygenase-1 by nicaraven after subarachnoid hemorrhage to prevent delayed cerebral vasospasm. Eur J Pharmacol. 2009;620(1–3):16–20.

    Article  PubMed  CAS  Google Scholar 

  36. Ono S, Komuro T, Macdonald RL. Heme oxygenase-1 gene therapy for prevention of vasospasm in rats. J Neurosurg. 2002;96(6):1094–102.

    Article  PubMed  CAS  Google Scholar 

  37. Clark JF, Sharp FR. Bilirubin oxidation products (BOXes) and their role in cerebral vasospasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2006;26(10):1223–33.

    Article  PubMed  CAS  Google Scholar 

  38. Clark JF, Harm A, Saffire A, Biehle SJ, Lu A, Pyne-Geithman GJ. Bilirubin oxidation products seen post subarachnoid hemorrhage have greater effects on aged rat brain compared to young. Acta Neurochir Suppl. 2011;110(Pt 1):157–62.

    PubMed  Google Scholar 

  39. Zhan X, Kim C, Sharp FR. Very brief focal ischemia simulating transient ischemic attacks (TIAs) can injure brain and induce Hsp70 protein. Brain Res. 2008;1234:183–97.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the National Institutes of Health (NS 066845).

Conflict of Interest

There were no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Zhi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharp, F.R., Zhan, X. & Liu, DZ. Heat Shock Proteins in the Brain: Role of Hsp70, Hsp 27, and HO-1 (Hsp32) and Their Therapeutic Potential. Transl. Stroke Res. 4, 685–692 (2013). https://doi.org/10.1007/s12975-013-0271-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-013-0271-4

Keywords

Navigation