Skip to main content
Log in

The role of Crk/Dock180/Rac1 pathway in the malignant behavior of human ovarian cancer cell SKOV3

  • Research Article
  • Published:
Tumor Biology

Abstract

Small GTPases, particularly the Rho family, are key regulators of cell motility and migration. Dock180 was well known for the main target of signal adaptor protein Crk and acted as a guanine-nucleotide exchange factor for small GTPase Rac1. In the present study, Dock180 was found to combine primarily with CrkI other than CrkII, and its association with Elmo1 was also demonstrated in ovarian cancer cell SKOV3. To evaluate the role of Dock180 in human ovarian cancer cell, we performed RNAi-mediated knockdown of Dock180 in SKOV3 cells using small interfering RNA expression vector. In Dock180 knockdown cells, we found that Elmo1 expression and Rac1 activity were decreased simultaneously. By contrast, the expressions of both another Crk-combining molecule C3G and Rap1 activity were observed to increase obviously. Accordingly, all Dock180 knockdown cells present with evident change in cell morphology, reduced cell proliferation, and attenuated cell migration. Taken together, these results suggest that signal transfer of Crk/Dock180/Rac1 is implicated in actin cytoskeleton reorganization and thus in the cell proliferation, motility, invasion, and of human ovarian cancer cell line SKOV3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002;2:563–72.

    Article  CAS  PubMed  Google Scholar 

  2. Hall A. Rho GTPases and the actin cytoskeleton. Science. 1998;279:509–14.

    Article  CAS  PubMed  Google Scholar 

  3. Mayer BJ, Hamaguchi M, Hanafusa H. A novel viral oncogene with structural similarity to phospholipase C.:. Nature. 1988;332(6161):272–5.

    Article  CAS  PubMed  Google Scholar 

  4. Matsuda M, Tanaka S, Nagata S, Kojima A, Kurata T, Shibuya M. Two species of human CRK cDNA encode proteins with distinct biological activities. Mol Cell Biol. 1992;12:3482–9.

    CAS  PubMed  Google Scholar 

  5. Tanaka S, Hattori S, Kurata T, Nagashima K, Fukui Y, Nakamura S, et al. Both the SH2 and SH3 domains of human CRK protein are required for neuronal differentiation of PC12 cells. Mol Cell Biol. 1993;13:4409–15.

    CAS  PubMed  Google Scholar 

  6. Gotoh T, Hattori S, Nakamura S, Kitayama H, Noda M, Takai Y, et al. Identification of Rap1 as a target for the Crk SH3 domain-binding guanine nucleotide-releasing factor C3G. Mol Cell Biol. 1995;15(12):6746–53.

    CAS  PubMed  Google Scholar 

  7. Hasegawa H, Kiyokawa E, Tanaka S, Nagashima K, Gotoh N, Shibuya M, et al. DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane. Mol Cell Biol. 1996;4:1770–6.

    Google Scholar 

  8. Kiyokawa E, Hashimoto Y, Kobayashi S, Sugimura H, Kurata T, Matsuda M. Activation of Rac1 by a Crk SH3-binding protein, DOCK180. Genes Dev. 1998;12:3331–6.

    Article  CAS  PubMed  Google Scholar 

  9. Nishihara H, Tanaka S, Tsuda M, Oikawa S, Maeda M, Shimizu M, et al. Molecular and immunohistochemical analysis of signaling adaptor protein Crk in human cancers. Cancer Lett. 2002;180(1):55–61.

    Article  CAS  PubMed  Google Scholar 

  10. Miller CT, Chen G, Gharib TG, Wang H, Thomas DG, Misek DE, et al. Increased C-CRK proto-oncogene expression is associated with an aggressive phenotype in lung adenocarcinomas. Oncogene. 2003;22(39):7950–7.

    Article  PubMed  Google Scholar 

  11. Takino T, Nakada M, Miyamori H, Yamashita J, Yamada KM, Sato H. CrkI adapter protein modulates cell migration and invasion in glioblastoma. Cancer Res. 2003;63(9):2335–7.

    CAS  PubMed  Google Scholar 

  12. Linghu H, Tsuda M, Makino Y, Watanabe T, Ichihara S, Sawa H, et al. Involvement of adaptor protein Crk in malignant feature of human ovarian cancer cell line MCAS. Oncogene. 2006;25:3547–56.

    Article  CAS  PubMed  Google Scholar 

  13. Hasegawa H, Kiyokawa E, Tanaka S, et al. DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane. Mol Cell Biol. 1996;16:1770–6.

    CAS  PubMed  Google Scholar 

  14. Erickson MR, Galletta BJ, Abmayr SM. Drosophila myoblast city encodes a conserved protein that is essential for myoblast fusion, dorsal closure, and cytoskeletal organization. J Cell Biol. 1997;138:589–603.

    Article  CAS  PubMed  Google Scholar 

  15. Nolan KM, Barrett K, Lu Y, Hu K, Vincent S, Settleman J. Myoblast city, the Drosophila homolog of DOCK180/CED-5, is required in a Rac signaling pathway utilized for multiple developmental processes. Genes Dev. 1998;12:3337–42.

    Article  CAS  PubMed  Google Scholar 

  16. Wu YC, Horvitz HR. C. elegans phagocytosis and cellmigration protein CED-5 is similar to human DOCK180. Nature. 1998;392:501–4.

    Article  CAS  PubMed  Google Scholar 

  17. Gumienny TL, Brugnera E, Tosello-Trampont AC, Kinchen JM, Haney LB, Nishiwaki K. CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell. 2001;107(1):27–41.

    Article  CAS  PubMed  Google Scholar 

  18. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature. 2002;420:629–35.

    Article  CAS  PubMed  Google Scholar 

  19. Para A, Krischke M, Merlot S, Shen Z, Oberholzer M, Lee S, et al. Dictyostelium Dock180-related RacGEFs regulate the actin cytoskeleton during cell motility. Mol Biol Cell. 2009;20(2):699–707.

    Article  CAS  PubMed  Google Scholar 

  20. Lu M, Ravichandran KS. Dock180–ELMO cooperation in Rac activation. Methods Enzymol. 2006;406:388–402.

    Article  CAS  PubMed  Google Scholar 

  21. Grimsley CM, Kinchen JM, Tosello-Trampont A, Brugnera E, Haney LB, Lu M, et al. Dock180 and ELMO1 proteins cooperate to promote evolutionarily conserved Rac-dependent cell migration. J Biol Chem. 2004;279(7):6087–97.

    Article  CAS  PubMed  Google Scholar 

  22. Payne SL, Hendrix MJ, Kirschmann DA. Lysyl oxidase regulates actin filament formation through the p130(Cas)/Crk/DOCK180 signaling complex. J Cell Biochem. 2006;98(4):827–37.

    Article  CAS  PubMed  Google Scholar 

  23. Akakura S, Kar B, Singh S, Cho L, Tibrewal N, Sanokawa-Akakura R, et al. C-terminal SH3 domain of CrkII regulates the assembly and function of the DOCK180/ELMO Rac-GEF. J Cell Physiol. 2005;204(1):344–51.

    Article  CAS  PubMed  Google Scholar 

  24. Gumienny TL, Brugnera E, Tosello-Trampont AC, Kinchen JM, Haney LB, Nishiwaki K, et al. CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway. Is required for phagocytosis and cell migration. Cell. 2001;107(1):27–41.

    Article  CAS  PubMed  Google Scholar 

  25. Brugnera E, Haney L, Grimsley C, Lu M, Walk SF, Tosello-Trampont AC, et al. Unconventional Rac-GEF activity is mediated through the Dock180–ELMO complex. Nat Cell Biol. 2002;4:574–82.

    CAS  PubMed  Google Scholar 

  26. Albert ML, Kim JI, Birge RB. Alphavbeta5 integrin recruits the CrkII–Dock180–rac1 complex for phagocytosis of apoptotic cells. Nat Cell Biol. 2000;2:899–905.

    Article  CAS  PubMed  Google Scholar 

  27. Hsia DA, Mitra SK, Hauck CR, Streblow DN, Nelson JA, Ilic D, et al. Differential regulation of cell motility and invasion by FAK. Cell Biol. 2003;160(5):753–67.

    Article  CAS  Google Scholar 

  28. Valle AM, Beuvin M, Boyer B. Activation of Rac1 by Paxillin–Crk–DOCK180 signaling complex is antagonized by Rap1 in migrating NBT-II cells. J Biol Chem. 2004;279(43):44940–6.

    Google Scholar 

  29. Gu J, Sumida Y, Sanzen N, Sekiguchi K. Laminin-10/11 and fibronectin differentially regulate integrin-dependent Rho and Rac activation via p130(Cas)–CrkII–DOCK180 pathway. J Biol Chem. 2001;276(29):27090–7.

    Article  CAS  PubMed  Google Scholar 

  30. Jarzynka MJ, Hu B, Hui KM, Bar-Joseph I, Gu W, Hirose T, et al. ELMO1 and Dock180, a bipartite Rac1 guanine nucleotide exchange factor, promote human glioma cell invasion. Cancer Res. 2007;67(15):7203–11.

    Article  CAS  PubMed  Google Scholar 

  31. Kiyokawa E, Hashimoto Y, Kurata T, Sugimura H, Matsuda M. Evidence that DOCK180 up-regulates signals from the CrkII–p130(Cas) complex. J Biol Chem. 1998;273(38):24479–84.

    Article  CAS  PubMed  Google Scholar 

  32. Tanaka S, Morishita T, Hashimoto Y, Hattori S, Nakamura S, Shibuya M, et al. C3G, a guanine nucleotide-releasing protein expressed ubiquitously, binds to the Src homology 3 domains of CRK and GRB2/ASH proteins. Proc Natl Acad Sci U S A. 1994;91(8):3443–7.

    Article  CAS  PubMed  Google Scholar 

  33. Kitayama H, Sugimoto Y, Matsuzaki T, Ikawa Y, Noda M. A ras-related gene with transformation suppressor activity. Cell. 1989;56(1):77–84.

    Article  CAS  PubMed  Google Scholar 

  34. Van Aelst L, Symons M. Role of Rho family GTPases in epithelial morphogenesis. Genes Dev. 2002;16(9):1032–54.

    Article  PubMed  Google Scholar 

  35. Bivona TG, Wiener HH, Ahearn IM, Silletti J, Chiu VK, Philips MR. Rap1 up-regulation and activation on plasma membrane regulates T cell adhesion. J Cell Biol. 2004;164(3):461–70.

    Article  CAS  PubMed  Google Scholar 

  36. Larue L, Bellacosa A. Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene. 2005;24(50):7443–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Qiou Wei in Center for Cancer Research, National Cancer Institute at Frederick, MD, USA, for his technical support. This work was supported by the grant from the National Natural Science Foundation of China (NSFC no. C30672432, no.C30772330) and was supported partly by the Natural Science Foundation Project of CQ CSTC, 2007BB5319, the grant for returned students abroad from the Ministry of Education of the People's Republic of China(2007), and the grant for Medical Sciences from the First Hospital, Chongqing Medical University (YXJJ2009-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Linghu.

Electronic supplementary materials

ESM 1

(PDF 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Linghu, H., Wang, J. et al. The role of Crk/Dock180/Rac1 pathway in the malignant behavior of human ovarian cancer cell SKOV3. Tumor Biol. 31, 59–67 (2010). https://doi.org/10.1007/s13277-009-0009-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-009-0009-9

Keywords

Navigation