Skip to main content
Log in

Caffeine and excitation–contraction coupling in skeletal muscle: a stimulating story

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Allen DG and Westerblad H (1995) The effect of caffeine on intracellular calcium, force and the rate of relaxation of mouse skeletal muscle. J Physiol 497: 331-342.

    Google Scholar 

  • Ashley CC, Mulligan IP and Lea TJ (1991) Ca2+ and activation mechanisms in skeletal muscle. Quart Rev Biophys 24: 1-73.

    Google Scholar 

  • Axelsson J and Thesleff S (1958) Activation of the contractile mechanism in striated muscle. Acta Physiol Scand 44: 55-66.

    PubMed  Google Scholar 

  • Berridge MJ (1997) Elementary and global aspects of calcium signalling. J Physiol 499: 291-306.

    PubMed  Google Scholar 

  • Bertocchini F, Ovitt CE, Conti A, Barone V, Scholer HR, Bottinelli R, Reggiani C and Sorrentino V(1997) Requirement for the ryanodine receptor type 3 for efficient contraction in neonatal skeletal muscles. EMBO J 16: 6956-6963.

    PubMed  Google Scholar 

  • Bhat MB, Zhao J, Zang W, Balke CW, Takeshima H, Wier WG and Ma J (1997) Caffeine-induced release of intracellular Ca2+ from Chinese hamster ovary cells expressing skeletal muscle ryanodine receptor. Effects on full-length and carboxyl-terminal portion of Ca2+ release channels. J Gen Physiol 110(6): 749-762.

    PubMed  Google Scholar 

  • Butcher RW and Sutherland EW (1962) Adenosine 30,50-phosphate in biological materials. J Biol Chem 237: 1244-1250.

    PubMed  Google Scholar 

  • Chapman RA and Miller DJ (1974) Structure-activity relations for caffeine: a comparative study of the inotropic effects of the methylxanthines, imidazoles and related compounds on the frog's heart. J Physiol 242: 615-634.

    PubMed  Google Scholar 

  • Chen SR and MacLennan DH (1994) Identification of calmodulin, Ca2+-and ruthenium red-binding domains in the Ca2+ release channel (ryanodine receptor) of rabbit skeletal muscle sarcoplasmic reticulum. J Biol Chem 269: 22698-22704.

    PubMed  Google Scholar 

  • Chen SRW, Li X, Ebisawa K and Zhang L (1997) Functional characterization of the recombinant type 3 Ca2+ release channel (ryanodine receptor) expressed in HEK293 cells. J Biol Chem 272: 24334-24246.

    Google Scholar 

  • Chen SR, Ebisawa K, Li X and Zhang L (1998) Molecular identification of the ryanodine receptor Ca2+ sensor. J Biol Chem 273: 14675-14678.

    PubMed  Google Scholar 

  • Chen SR, Zhang L and MacLennan DH (1992) Characterisation of a Ca2+ binding and regulatory site in the Ca2+ release channel (ryanodine receptor) of rabbit skeletal muscle sarcoplasmic reticulum. J Biol Chem 267: 23318-23326.

    PubMed  Google Scholar 

  • Chen SR, Zhang L and MacLennan DH (1993) Antibodies as probes for Ca2+ activation sites in the Ca2+ release channel (ryanodine receptor) of rabbit skeletal muscle sarcoplasmic reticulum. J Biol Chem 268: 13414-13421.

    PubMed  Google Scholar 

  • Conti A, Gorza L and Sorrentiono V (1996) Differential distribution of ryanodine receptor type 3 (RyR3) gene product in mammalian skeletal muscles. Biochem J 316: 19-23.

    PubMed  Google Scholar 

  • Coronado R, Morrissette J, Sukhareva M and Vaughan DM (1994) Structure and function of ryanodine receptor. Am J Physiol 266: C1485-C1504.

    PubMed  Google Scholar 

  • Daly JW (1993) Mechanism of action of caffeine. In: Garattini S (ed.) Caffeine, Coffee, and Health. (pp. 97-150) Raven Press: New York.

    Google Scholar 

  • Delay M, Ribalet B and Vergara J (1986) Caffeine potentation of calcium release in frog skeletal muscle fibres. J Physiol 375: 535-559.

    PubMed  Google Scholar 

  • Donaldson SKB (1985) Peeled mammalian skeletal muscle fibers. Possible stimulation of Ca2+ release via a transverse tubule-sarcoplasmic reticulum mechanism. J Gen Physiol 86: 501-525.

    PubMed  Google Scholar 

  • Eberstein A and Sandow A (1963) Fatigue mechanisms in muscle fibres. In: The Effect of Use and Disuse of Neuromuscular Functions. (pp. 515-526) Praha.

  • EMHG (1984) A protocol for the investigation of malignant hyper-pyrexia (MH) susceptibility. The European Malignant Hyperpyrexia Group. Br J Anaesth 56: 1267-1269.

    Google Scholar 

  • Endo M (1977) Calcium release from the sarcoplasmic reticulum. Physiol Rev 57: 71-108.

    PubMed  Google Scholar 

  • Endo M (1985) Calcium release from sarcoplasmic reticulum. Curr Topics Membr Transp 25: 181-230.

    Google Scholar 

  • Endo M, Tanaka M and Ogawa Y (1970) Calcium-induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. Nature 228: 34-36.

    PubMed  Google Scholar 

  • Fang YI, Adachi M, Kobayashi J and Ohizumi Y (1993) High affinity binding of 9-[3H]methyl-7-bromoeudistomin D to the caffeine-binding site of skeletal muscle sarcoplasmic reticulum. J Biol Chem 268: 18622-18625.

    PubMed  Google Scholar 

  • Fill MD and Best PM (1989) Block of contracture in skinned frog skeletal muscle fibers by calcium antagonists. J Gen Physiol 93: 429-449.

    PubMed  Google Scholar 

  • Ford LE and Podolsky RJ (1970) Regenerative calcium release within muscle cells. Science 167: 58-59.

    PubMed  Google Scholar 

  • Fryer MW and Neering IR (1989) Actions of caffeine on fast-and slow-twitch muscles of the rat. J Physiol 416: 435-454.

    PubMed  Google Scholar 

  • Fryer MW and Stephenson DG (1996) Total and sarcoplasmic reticulum contents of skinned fibres from rat skeletal muscle. J Physiol 493: 357-370.

    PubMed  Google Scholar 

  • Hasselbach W and Migala A (1992) How many ryanodine binding sites are involved in caffeine induced calcium release from sarcoplasmic reticulum terminal cysternae vesicles? Z Naturforsch 47: 136-147.

    Google Scholar 

  • Herrmann-Frank A (1989) Caffeine and Ca2+-induced mechanical oscillations in isolated skeletal muscle fibres of the frog. J Muscle Res Cell Mot 10: 437-445.

    Google Scholar 

  • Herrmann-Frank A and Meissner G (1989) Isolation of a Ca2+-releasing factor from caffeine-treated muscle fibres and its effect on Ca2+ release from the sarcoplasmic reticulum. J Muscle Res Cell Mot 10: 427-436.

    Google Scholar 

  • Herrmann-Frank A and Lehmann-Horn F (1996) Regulation of the purified Ca2+ release channel/ryanodine receptor complex of skeletal muscle sarcoplasmic reticulum by luminal calcium. Pflügers Arch 432: 155-157

    Google Scholar 

  • Herrmann-Frank A, Richter M and Lehmann-Horn F (1996) 4-Chloro-m-cresol: a specific tool to distinguish between malignant hyperthermia-susceptible and normal muscle. Biochem Pharmacol 52: 149-155

    PubMed  Google Scholar 

  • Hodgkin AL and Horowicz P (1960) Potassium contractures in single muscle fibres. J Physiol 153: 386-403.

    PubMed  Google Scholar 

  • Hoock C, Steinmetz J and Schmidt H (1996) Caffeine-evoked contractures in single slow (tonic) muscle fibres of the frog (Rana temporaria and R. esculenta). Pflügers Arch 432: 207-214.

    Google Scholar 

  • Kabbara AA and Stephenson DG (1994) Effects of Mg2+ on Ca2+ handling by the sarcoplasmic reticulum in skinned skeletal and cardiac muscle fibres. Pflügers Arch 428: 331-339.

    Google Scholar 

  • Klein MG, Simon BJ and Schneider MF (1990) Effects of caffeine on calcium release from the sarcoplasmic reticulum in frog skeletal muscle fibres. J Physiol 425: 599-626.

    PubMed  Google Scholar 

  • Kobayashi J, Ishibashi M, Nagai U and Ohizumi Y (1989) 9-Methyl-7-bromoeudistomin D, a potent inducer of calcium release from sarcoplasmic reticulum of skeletal muscle. Experientia 45: 782-783.

    PubMed  Google Scholar 

  • Koshita M and Oba T (1989) Caffeine treatment inhibits drug-induced calcium release from sarcoplasmic reticulum and caffeine contracture but not tetanus in frog skeletal muscle. Can J Physiol Pharmacol 67: 890-895.

    PubMed  Google Scholar 

  • Kovács L and Szücs G (1983) Effect of caffeine on intramembrane charge movement and calcium transients in cut skeletal muscle fibres of the frog J Physiol 341: 559-578.

    PubMed  Google Scholar 

  • Kumbaraci NM and Nastuk WL (1982) Action of caffeine in excitation-contraction coupling of frog skeletal muscle fibres. J Physiol 325: 195-211.

    PubMed  Google Scholar 

  • Lamb GD (1993) Ca2+ inactivation, Mg2+ inhibition and malignant hyperthermia. J Muscle Res Cell Mot 14: 554-556.

    Google Scholar 

  • Lamb GD and Stephenson DG (1990a) Calcium release in skinned muscle fibres of the toad by transverse tubule depolarization or by direct stimulation. J Physiol 423: 495-517.

    PubMed  Google Scholar 

  • Lamb GD and Stephenson DG (1990b) Control of calcium release and the effect of ryanodine in skinned muscle fibres of the toad. J Physiol 423: 519-542.

    PubMed  Google Scholar 

  • Lamb GD and Stephenson DG (1991) Effect of Mg2+ on the control of Ca2+ release in skeletal muscle fibres of the toad. J Physiol 434: 507-528.

    PubMed  Google Scholar 

  • Lamb GD and Stephenson DG (1992) Importance of Mg2+ in excitation-contraction coupling in skeletal muscle. News in Physiol Sciences 7: 270-274.

    Google Scholar 

  • Lamb GD and Stephenson DG (1994) Effects of intracellular pH and [Mg2+] on excitation-contraction coupling in skeletal muscle fibres of the rat. J Physiol 478: 331-339.

    PubMed  Google Scholar 

  • Lamb GD and Stephenson DG (1996) Effects of FK506 and rapamycin on excitation-contraction coupling in skeletal muscle fibres of the rat. J Physiol 494: 569-576.

    Google Scholar 

  • Lamb GD, Junankar P and Stephenson DG (1995) Raised intracellular [Ca2+] abolishes excitation-contraction coupling in skeletal muscle fibres of rat and toad. J Physiol 489: 349-362.

    PubMed  Google Scholar 

  • Launikonis BS and Stephenson DG (1997) Effect of saponin treatment on the sarcoplasmic reticulum of rat, toad and crustacean (yabby) skeletal muscle. J Physiol 504: 425-437.

    PubMed  Google Scholar 

  • Laver DR and Curtis BA (1996) Response of ryanodine receptor channels to Ca2+ steps produced by rapid solution exchange. Biophys J 71: 732-741.

    PubMed  Google Scholar 

  • Laver DR, Owen VJ, Junankar PR, Taske NL, Dulhunty AF and Lamb GD (1997) Reduced inhibitory effect of Mg2+ on ryanodine receptor-Ca2+ release channels in malignant hyperthermia. Biophys J 73: 1913-1924.

    PubMed  Google Scholar 

  • Liu W and Meissner G (1997) Structure-activity relationship of xanthines and skeletal muscle ryanodine receptor/Ca2+ release channel. Pharmacology 54: 135-143.

    PubMed  Google Scholar 

  • Lüttgau HC and Oetliker H (1968) The action of caffeine on the activation of the contractile mechanism in striated muscle fibres. J Physiol 194: 51-74.

    Google Scholar 

  • MacLennan DH (1995) Discordance between phenotype and genotype in malignant hyperthermia. Curr Opin Neurol 8: 397-401.

    PubMed  Google Scholar 

  • Marks AR (1996) Cellular functions of immunophilins. Physiol Rev 76: 631-649.

    PubMed  Google Scholar 

  • Marx SO, Ondrias K and Marks AR (1998) Coupled gating between individual skeletal muscle Ca2+ release channels. Science 281: 818-821.

    PubMed  Google Scholar 

  • Meissner G (1994) Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu Rev Physiol 56: 485-508.

    PubMed  Google Scholar 

  • Meissner G, Darling E and Eveleth J (1986) Kinetics of rapid Ca2+ release by sarcoplasmic reticulum. Effects of Ca2+, Mg2+, and adenine nucleotides. Biochemistry 25: 236-244.

    PubMed  Google Scholar 

  • Melzer W, Herrmann-Frank A and Lüttgau H Ch (1995) The role of Ca2+ ions on excitation-contraction coupling in skeletal muscle fibres. Biochim Biophys Acta 1241: 59-116.

    PubMed  Google Scholar 

  • Menegazzi P, Larini F, Treves S, Guerrini R, Quadroni M and Zorzato F (1994) Identification and characterization of three calmodulin binding sites of skeletal muscle ryanodine receptor. Biochemistry 33: 9078-9084.

    PubMed  Google Scholar 

  • Mickelson JR and Louis CF (1996) Malignant hyperthermia: excitation-contraction coupling, Ca2+ release channel, and cell Ca2+ regulation defects. Physiol Rev 76: 537-592.

    PubMed  Google Scholar 

  • Murayama T, Kurebayashi N and Ogawa Y (1998) Effects of caffeine and Mg2+ on the Ca2+ activation and inactivation sites of frog ryanodine receptor. Biophys J 74: A163.

    Google Scholar 

  • Nakamura Y, Kobayashi J, Gilmore J, Mascal M, Rinehart KL Jr, Nakamura H and Ohizumi Y (1986) Bromo-eudistomin D, a novel inducer of calcium release from fragmented sarcoplasmic reticulum that causes contractions of skinned muscle fibers. J Biol Chem 261: 4139-4142.

    PubMed  Google Scholar 

  • O'Driscoll S, McCarthy TV, Eichinger HM, Erhardt W, Lehmann-Horn F and Herrmann-Frank A (1996) Calmodulin sensitivity of the sarcomplasmic reticulum ryanodine receptor from normal and malignant-hyperthermia-susceptible muscle. Biochem J 319: 421-426.

    PubMed  Google Scholar 

  • Pagala MKD and Taylor SR (1998) Imaging caffeine-induced Ca2+ transients in individual fast-twitch and slow-twitch rat skeletal muscle fibers. Am J Physiol 274: C623-C632.

    PubMed  Google Scholar 

  • Palade P, Dettbarn C, Brunder D, Stein P and Hals G (1989) Minireview. Pharmacology of calcium release from sarcoplasmic reticulum. J Bioenerg and Biomembr 21: 295-320.

    Google Scholar 

  • Pizzarro G, Shirokova N, Tsugorka A and Ríos E (1997) “Quantal” calcium release operated by membrane voltage in frog skeletal muscle. J Physiol 501: 289-303.

    PubMed  Google Scholar 

  • Richter M, Schleithoff L, Deufel T, Lehmann-Horn F and Herrmann-Frank A (1997) Functional characterization of a distinct ryanodine receptor mutation in human malignant hyperthermia-susceptible muscle. J Biol Chem 272: 5256-5260.

    PubMed  Google Scholar 

  • Rousseau E, LaDine J, Liu Q and Meissner G (1988) Activation of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum by caffeine and related compounds. Arch Biochem Biophys 267: 75-86.

    PubMed  Google Scholar 

  • Sandow A (1965) Excitation-contraction coupling in skeletal muscle. Pharmacol Rev 17: 265-320.

    PubMed  Google Scholar 

  • Sarközi S, Pouliquin P and Herrmann-Frank A (1998) Regulation of the mutant ryanodine receptor from malignant hyperthermia-susceptible muscle by calcium and 4-chloro-m-cresol. Pflügers Arch 435: R177

    Google Scholar 

  • Schneider MF and Chandler WK (1973) Voltage-dependent charge movement in skeletal muscle: a possible step in excitation-contraction coupling. Nature 242: 244-246.

    PubMed  Google Scholar 

  • Seino A, Kobayashi M, Kobayashi J, Fang Y, Ishibashi M, Nakamura H, Momose K and Ohizumi Y (1991) 9-methyl-7-bromoeudistomin D, a powerful radio-labelable Ca2+ releaser having caffeine-like properties, acts on Ca2+-induced Ca2+ release channels of sarcoplasmic reticulum. J Pharmacol Exper Therap 256: 861-867.

    Google Scholar 

  • Shankar VS, Pazianas M, Huang CL-H, Simon B, Adebanjo OA and Zaidi M (1995) Caffeine modulates Ca2+ receptor activation in isolated rat osteoclasts and induces intracellular Ca2+ release. Am J Physiol 268: F447-F454.

    PubMed  Google Scholar 

  • Shirokova N and Ríos E (1996a) Activation of Ca2+ release by caffeine and voltage in frog skeletal muscle. J Physiol 493: 317-339.

    PubMed  Google Scholar 

  • Shirokova N and Ríos E (1996b) Caffeine enhances intramembranous charge movement in frog skeletal muscle by increasing cytoplasmic Ca2+ concentration. J Physiol 493: 341-356.

    PubMed  Google Scholar 

  • Shomer NH, Mickelson JR and Louis CF (1994) Caffeine stimulation of malignant hyperthermia-susceptible sarcoplasmic reticulum Ca2+ release channel. Am J Physiol 267: C1253-C1261.

    PubMed  Google Scholar 

  • Simon BJ, Klein MG and Schneider MF (1989) Caffeine slows turn-off of calcium release in voltage clamped skeletal muscle fibers. Biophys J 55: 793-797.

    PubMed  Google Scholar 

  • Sitsapesan R and Williams AJ (1990) Mechanisms of caffeine activation of single calcium-release channels of sheep cardiac sarcoplasmic reticulum. J Physiol 423: 425-439.

    PubMed  Google Scholar 

  • Stephenson DG (1996) Molecular cogs in machina carnis. Clinical and exper Pharmacol Physiol 23: 898-907.

    Google Scholar 

  • Struk A and Melzer W (1999) Modification of excitation-contraction coupling by 4-chloro-m-cresol in voltage-clamped cut muscle fibres of the frog. (R. pipiens). J Physiol 515: 221-231.

    PubMed  Google Scholar 

  • Suda N (1995) Involvement of Mg2+ in terminating Ca2+ release in cultured rat skeletal muscle. FEBS Letters 359: 223-228.

    PubMed  Google Scholar 

  • Suda N and Heinemann C (1996) RISC (Repolarization-induced stop of caffeine-contracture) is not due to store depletion in cultured murine skeletal muscle. Pflügers Arch 432: 948-951.

    Google Scholar 

  • Suda N and Penner R (1994) Membrane repolarization stops caffeine-induced Ca2+ release in skeletal muscle cells. Proc Nat Acad Science (USA) 91: 5725-5729.

    Google Scholar 

  • Sutko JL and Airey JA (1996) Ryanodine receptor Ca2+ release channels: Does diversity in form equal diversity in function? Physiol Rev 76: 1027-1071.

    PubMed  Google Scholar 

  • Szücs G, Csernoch L, Magyar J and Kovács L (1991) Contraction threshold and the “hump” component of charge movement in frog skeletal muscle. J Gen Physiol 97: 897-911.

    PubMed  Google Scholar 

  • Takahashi Y, Furukawa K, Ishibashi M, Kozutsumi D, Ishiyama H, Kobayashi J and Ohizumi Y (1995) Structure-activity relationship of bromoeudistomin D, a powerful Ca2+ releaser in skeletal muscle sarcoplasmic reticulum. Eur J Pharmacol 288: 285-293.

    PubMed  Google Scholar 

  • Takeshima H, Iino M, Takekura H, Nishi M, Kuno J, Minova O, Takano H and Noda T (1994) Excitation-contraction uncoupling and muscular degeneration in mice lacking functional skeletal muscle ryanodine-receptor gene. Nature 369: 556-559.

    Article  PubMed  Google Scholar 

  • Takeshima H, Nishimura S, Matsumoto T, Ishida H, Kangawa K, Minamino N, Matsuo H, Ueda M, Hanaoka M, Hirose T and Numa S (1989) Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339: 439-445.

    Article  PubMed  Google Scholar 

  • Tong J, Oyamada H, Demaurex N, Grinstein S, McCarthy TV and MacLennan DH (1997) Caffeine and halothane sensitivity of intracellular Ca2+ release is altered by 15 calcium release channel (ryanodine receptor) mutations associated with malignant hyperthermia and/or central core disease. J Biol Chem 272: 26332-26339.

    Article  PubMed  Google Scholar 

  • Tripathy A and Meissner G (1996) Sarcoplasmic luminal Ca2+ has access to cytosolic activation and inactivation sites of skeletal muscle Ca2+ release channels. Biophys J 70: 2600-2615.

    PubMed  Google Scholar 

  • Wagenknecht T and Radermacher M (1997) Ryanodine receptors: structure and macromolecular interactions. Curr Opin Struct Biol 7: 258-265.

    Article  PubMed  Google Scholar 

  • Weber A and Herz R (1968) The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum. J Gen Physiol 52: 750-759.

    Article  PubMed  Google Scholar 

  • Wendt IR and Stephenson DG (1983) Effects of caffeine on Ca-activated force production in skinned cardiac and skeletal muscle fibres of the rat. Pflügers Arch 398: 210-216.

    Article  Google Scholar 

  • Westerblad H, Lee JA, Lännergren J and Allen DG (1991) Cellular mechanisms of fatigue in skeletal muscle. Am J Physiol 261: C195-C209.

    PubMed  Google Scholar 

  • Wiedenmann D, Erhardt W, Eichinger HM, Lehmann-Horn F and Herrmann-Frank A (1999) Ca2+ release in skeletal muscle of pigs heterozygous for the malignant hyperthermia (MH) Arg615Cys mutation: a model for human MH? Submitted for publication.

  • Yamazawa T, Takeshima H, Shimuta M and Iino M (1997) A region of the ryanodine receptor critical for excitation-contraction coupling in skeletal muscle. J Biol Chem 272: 8161-8164.

    Article  PubMed  Google Scholar 

  • Yang HC, Reedy MM, Burke CL and Strasburg GM (1994) Calmodulin interaction with the skeletal muscle sarcoplasmic reticulum calcium channel protein. Biochemistry 33: 518-525.

    PubMed  Google Scholar 

  • Zorzato F, Fujii J, Otsu K, Phillips M, Green NM, Lai FA, Meissner G and MacLennan DH (1990) Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J Biol Chem 265: 2244-2256.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrmann-Frank, A., Lüttgau, HC. & George Stephenson, D. Caffeine and excitation–contraction coupling in skeletal muscle: a stimulating story. J Muscle Res Cell Motil 20, 223–236 (1999). https://doi.org/10.1023/A:1005496708505

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005496708505

Keywords

Navigation