Skip to main content
Log in

Local Anti-angiogenic Brain Tumor Therapies

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The critical role of angiogenesis in the growth of solid tumors, including neoplasms of the central nervous system, has provided the impetus for research leading to the discovery of inhibitors of tumor neovascularization. The therapeutic potential of systemically administered antiangiogenic drugs for brain tumors, however, is limited by a variety of anatomic and physiologic barriers to drug delivery. Implantable controlled-release polymers for local drug administration directly into the tumor parenchyma have therefore been developed to achieve therapeutic concen-trations of these drugs within the brain while minimizing systemic toxicity. With use of these polymers, successfull antiangiogenic therapy for treatment of experimental intracranial malignancies has been achieved. This has been demonstrated with a variety of otherwise unrelated drugs – including the angiostatic steroids, tetracycline derivatives, and amiloride – which modulate collagenase activity, and thus, basement membrane and interstitial matrix metabolism. Controlled‐release polymers provide a clinically practicable method of achieving sustained antian-giogenic therapy which can be readily used in combination with other treatment modalities such as cytoreductive surgery, radiation, and cytotoxic chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Knighton D, Ausprunk D, Tapper D, Folkman J: Avascular and vascular phases of tumour growth in the chick embryo. Br J Cancer 35: 347-356, 1977

    Google Scholar 

  2. Gimbrone M, Leapman S, Cotran R, Folkman J: Tumor dormancy in vivo by prevention of neovascularization. J Exp Med 136: 261-276, 1972

    Google Scholar 

  3. Folkman J, Hochberg M: Self-regulation of growth in three dimensions. J Exp Med 138: 745-753, 1973

    Google Scholar 

  4. Blood CH, Zetter BR: Tumor interactions with the vasculature: angiogenesis and tumor metastasis. Biochim Biophys Acta 1032: 89-118, 1990

    Google Scholar 

  5. Folkman J, Brem H: Angiogenesis and inflammation. In: Gallin JI, Goldstein IM, Snyderman R (eds) Inflammation: Basic Principles and Clinical Correlates. Raven Press, Ltd., New York, 1992, pp 821-839

    Google Scholar 

  6. Folkman J: How is blood vessel growth regulated in normal and neoplastic tissue? G.H.A. Clowes Memorial Award lecture. Cancer Res 46: 467-473, 1986

    Google Scholar 

  7. Furcht LT: Critical factors controlling angiogenesis: cell products, cell matrix, and growth factors. Lab Invest 55: 505-509, 1986

    Google Scholar 

  8. D'Amore PA, Thompson RW: Mechanisms of angiogenesis. Ann Rev Physiol 49: 453-464, 1987

    Google Scholar 

  9. Liotta LA, Steeg PS, Stetler-Stevenson WG: Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64: 327-336, 1991

    Google Scholar 

  10. Gimbrone M, Cotran R, Leapman S, Folkman J: Tumor growth and neovascularization: an experimental model using the rabbit cornea. J Natl Cancer Inst 52: 413-419, 1974

    Google Scholar 

  11. Folkman J: Tumor angiogenesis: a possible control point in tumor growth. Ann Int Med 82: 96-100, 1975

    Google Scholar 

  12. Folkman J: Tumor angiogenesis: therapeutic implications. N Engl J Med 285: 1182-1186, 1971

    Google Scholar 

  13. Brem H, Thompson D, Long DM, Patz A: Human brain tumors: differences in ability to stimulate angiogenesis. Surg Forum 31: 471-473, 1980

    Google Scholar 

  14. Brem S: The role of vascular proliferation in the growth of brain tumors. Clin Neurosurg 23: 440-453, 1976

    Google Scholar 

  15. Brem S, Cotran R, Folkman J: Tumor angiogenesis: a quantitative method for histologic grading. J Natl Cancer Inst 48: 347-356, 1972

    Google Scholar 

  16. Li VW, Folkerth RD, Watanabe H, Yu C, Rupnick M, Barnes P, Scott RM, Black PM, Sallan SE, Folkman J: Microvessel count and cerebrospinal fluid basic fibroblast growth factor in children with brain tumours. Lancet 344: 82-86, 1994

    Google Scholar 

  17. Wesseling P, Vandersteenhoven JJ, Downey BT, Ruiter DJ, Burger PC: Cellular components of microvascular proliferation in human glial and metastatic brain neoplasms. A light microscopic and immunohistochemical study of formalin-fixed, routinely processed material. Acta Neuropathol (Berl) 85: 508-514, 1993

    Google Scholar 

  18. Brem H, Patz J, Tapper D: Detection of human central nervous system tumors: use of migration-stimulating activity of the cerebrospinal fluid. Surg Forum 34: 532-534, 1983

    Google Scholar 

  19. Guerin C, Wolff JE, Laterra J, Drewes LR, Brem H, Goldstein GW: Vascular differentiation and glucose transporter expression in rat gliomas: effects of steroids. Ann Neurol 31: 481-487, 1992

    Google Scholar 

  20. Grabb PA, Gilbert MR: Neoplastic and pharmacological influence on the permeability of an in vitro blood-brain barrier. J Neurosurg 82: 1053-1058, 1995

    Google Scholar 

  21. Less JR, Skalak TC, Sevick EM, Jain RK: Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Res 51: 265-273, 1991

    Google Scholar 

  22. Less JR, Skalak TC, Sevick EM, Jain RK: Microvascular network architecture in a mammary carcinoma. Exs 61: 74-80, 1992

    Google Scholar 

  23. Jain RK: Tumor blood Flow-II: characterization and modulation. Critical Issues in Tumor Microcirculation, Angiogenesis and Metastasis (conference proceedings) 1994. Cambridge, Massachusetts. Harvard Medical School and the Massachusetts General Hospital

    Google Scholar 

  24. Jain RK: Determinants of tumor blood flow: a review. Cancer Res 48: 2641-2658, 1988

    Google Scholar 

  25. Yuan F, Salehi HA, Boucher Y, Vasthare US, Tuma RF, Jain RK: Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res 54: 4564-4568, 1994

    Google Scholar 

  26. Sipos EP, Brem H: New delivery systems for brain tumor therapy. Neurologic Clinics 13: 813-825, 1995

    Google Scholar 

  27. Tamargo RJ, Brem H: Drug delivery to the central nervous system: a review. Neurosurg Quarterly 2: 259-279, 1992

    Google Scholar 

  28. Jain RK: Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J Natl Cancer Inst 81: 570-576, 1989

    Google Scholar 

  29. Hochberg FH, Pruitt A: Assumptions in the radiotherapy of glioblastoma. Neurology 30: 907-911, 1980

    Google Scholar 

  30. Langer R, Brem H, Falterman K, Klein M, Folkman J: Isolation of a cartilage factor that inhibits tumor neovascularization. Science 193: 70-72, 1976

    Google Scholar 

  31. Langer R, Folkman J: Polymers for the sustained release of proteins and other macromolecules. Nature 263: 797-800, 1976

    Google Scholar 

  32. Langer R, Murray J: Angiogenesis inhibitors and their delivery systems. Appl Biochem Biotech 8: 9-24, 1983

    Google Scholar 

  33. Guerin C, Tamargo RJ, Olivi A, Brem H: Brain tumor angiogenesis: drug delivery and new inhibitors. In: Maragoudakis ME, Gullino P, Lelkes PI (eds) Angiogenesis in Health and Disease. Plenum Press, New York, 1992, pp 265-274

    Google Scholar 

  34. Leong KW, D'Amore P, Marletta M, Langer R: Bioerodible polyanhydrides as drug-carrier matrices. II: Biocompatibility and chemical reactivity. J Biomed Mater Res 20: 51-64, 1986

    Google Scholar 

  35. Brem H, Mahaley MSJ, Vick NA, Black KL, Schold SCJ, Burger PC, Friedman AH, Ciric IS, Eller TW, Cozzens JW, Kenealy JN: Interstitial chemotherapy with drug polymer implants for the treatment of recurrent gliomas. J Neurosurg 74: 441-446, 1991

    Google Scholar 

  36. Brem H, Piantadosi S, Burger P, Walker M, Selker R, Vick N, Black K, Sisti M, Brem S, Mohr G, Muller P, Morawetz R, Schold S, Group P-BTT: Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. Lancet 345: 1008-1012, 1995

    Google Scholar 

  37. Valtonen S, Timonen U, Toivanen P, Kalimo H, Kivipelto L, Heiskanen O, Unsgaard G, Kuurne T: Interstitial chemotherapy with carmustine-loaded polymers for high-grade gliomas: A randomized double-blind study. Neurosurgery 41: 44-49, 1997

    Google Scholar 

  38. Sipos EP, Brem H: Angiogenesis in nervous system tumors. In: Black PM, Loeffler JS (eds) Cancer of the Nervous System. Blackwell Scientific Publications, Inc., Cambridge, Massachusetts, 1997, pp 858-873

    Google Scholar 

  39. Eisenstein R, Sorgente N, Soble LW, Miller A, Kuettner KE: The resistance of certain tissues to invasion: penetrability of explanted tissues by vascularized mesenchyme. Am J Pathol 73: 765-774, 1973

    Google Scholar 

  40. Haraldsson S: The vascular pattern of a growing and full grown human epiphysis. Acta Anat 48: 156, 1962

    Google Scholar 

  41. Blackwood HJJ: Vascularization of the condylar cartilage of the human mandible. J Anat 99: 551, 1965

    Google Scholar 

  42. Brem H, Folkman J: Inhibition of tumor angiogenesis mediated by cartilage. J Exp Med 141: 427-439, 1975

    Google Scholar 

  43. Moses MA, Sudhalter J, Langer R: Identification of an inhibitor of neovascularization from cartilage. Science 248: 1408-1410, 1990

    Google Scholar 

  44. Murray JB, Allison K, Sudhalter J, Langer R: Purification and partial amino acid sequence of a bovine cartilage derived collagenase inhibitor. J Biol Chem 261: 4154-4159, 1986

    Google Scholar 

  45. Moses MA, Wiederschain D, Wu I, Fernandez CA, Ghazizadeh V, Lane WS, Flynn E, Sytkowski A, Tao T, Langer R: Troponin I is present in human cartilage and inhibits angiogenesis. Proc Natl Acad Sci USA 96: 2645-2650, 1999

    Google Scholar 

  46. Folkman J, Langer R, Linhardt R, Haudenschild C, Taylor S: Angiogenesis inhibition and tumor regression caused by heparin or a heparin fragment in the presence of cortisone. Science 221: 719-725, 1983

    Google Scholar 

  47. Crum R, Szabo S, Folkman J: A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science 230: 1375-1378, 1985

    Google Scholar 

  48. Folkman J, Ingber DE: Angiostatic steroids. Method of discovery and mechanism of action. Ann Surg 206: 374-383, 1987

    Google Scholar 

  49. Maragoudakis M, Sarmonika M, Panoutsacopoulou M: Antiangiogenic action of heparin plus cortisone is associated with decreased collagenous protein synthesis in the chick chorioallantoic membrane system. J Pharmacol Exp Ther 251: 679-682, 1989

    Google Scholar 

  50. Harada I, Kikuchi T, Shimomura Y, Yamamoto M, Ohno H, Sato N: The mode of action of anti-angiogenic steroid and heparin. Exs 61: 445-448, 1992

    Google Scholar 

  51. Ingber D, Madri J, Folkman J: A possible mechanism for inhibition of angiogenesis by angiostatic steroids: induction of capillary basement membrane dissolution. Endocrinology 119: 1768-1775, 1986

    Google Scholar 

  52. Ashino-Fuse H, Takano Y, Oikawa T, Shimamura M, Iwaguchi T: Medroxyprogesterone acetate, an anti-cancer and anti-angiogenic steroid, inhibits the plasminogen activator in bovine endothelial cells. Int J Cancer 44: 859-864, 1989

    Google Scholar 

  53. Blei F, Wilson EL, Mignatti P, Rifkin DB: Mechanism of action of angiostatic steroids: suppression of plasminogen activator activity via stimulation of plasminogen activator inhibitor synthesis. J Cell Physiol 155: 568-578, 1993

    Google Scholar 

  54. Lee JK, Choi B, Sobel RA, Chiocca EA, Martuza RL: Inhibition of growth and angiogenesis of human neurofibrosarcoma by heparin and hydrocortisone. J Neurosurg 73: 429-435, 1990

    Google Scholar 

  55. Tamargo RJ, Leong KW, Brem H: Growth inhibition of the 9L glioma using polymers to release heparin and cortisone acetate. J Neuro-Oncol 9: 131-138, 1990

    Google Scholar 

  56. Kroon AM, Dontje BHJ, Holtrop M, Van den Bogert C: The mitochondrial genetic system as a target for chemotherapy: tetracyclines as cytostatics. Cancer Lett 25: 33-40, 1984

    Google Scholar 

  57. Golub LM, Ramamurthy N, McNamara TF, Gomes B, Wolff M, Casino A, Kapoor A, Zambon J, Ciancio S, Schneir M: Tetracyclines inhibit tissue collagenase activity. A new mechanism in the treatment of periodontal disease. J Periodontal Res 19: 651-655, 1984

    Google Scholar 

  58. Golub LM, Wolff M, Lee HM, McNamara TF, Ramamurthy NS, Zambon J, Ciancio S: Further evidence that tetracyclines inhibit collagenase activity in human crevicular fluid and from other mammalian sources. J Periodontal Res 20: 12-23, 1985

    Google Scholar 

  59. Golub LM, Ramamurthy NS, McNamara TF, Greenwald RA, Rifkin BR: Tetracyclines inhibit connective tissue breakdown: new therapeutic implications for an old family of drugs. Crit Rev Oral Biol Med 2: 297-321, 1991

    Google Scholar 

  60. Zbinovsky V, Chrekian GP: Minocycline. In: Florey K (eds) Analytical Profiles of Drug Substances. Academic Press, New York, 1977, pp 323-339

    Google Scholar 

  61. Sande MA, Mandell GL: Antimicrobial agents: tetracyclines, chloramphenicol, erythromycin, and miscellaneous antibacterial agents. In: Gilman AG, Rall TW, Nies AS, Taylor P (eds) Goodman and Gilman's The Pharmacological Basis of Therapeutics. Pergamon Press, New York, 1990, pp 1117-1125

    Google Scholar 

  62. Golub LM, Lee HM, Lehrer G, Nemiroff A, McNamara TF, Kaplan R, Ramamurthy NS: Minocycline reduces gingival collagenolytic activity during diabetes. Preliminary observations and a proposed new mechanism of action. J Periodontal Res 18: 516-526, 1983

    Google Scholar 

  63. Tamargo RJ, Bok RA, Brem H: Angiogenesis inhibition by minocycline. Cancer Res 51: 672-675, 1991

    Google Scholar 

  64. Guerin C, Laterra J, Masnyk T, Golub LM, Brem H: Selective endothelial growth inhibition by tetracyclines that inhibit collagenase. Biochem Biophys Res Commun 188: 740-745, 1992

    Google Scholar 

  65. Sotomayor EA, Teicher BA, Schwartz GN, Holden SA, Menon K, Herman TS, Frei E: Minocycline in combination with chemotherapy or radiation therapy in vitro and in vivo. Cancer Chemother Pharmacol 30: 377-384, 1992

    Google Scholar 

  66. Teicher BA, Sotomayor EA, Huang ZD: Antiangiogenic agents potentiate cytotoxic cancer therapies against primary and metastatic disease. Cancer Res 52: 6702-6704, 1992

    Google Scholar 

  67. Teicher BA, Holden SA, Ara G, Sotomayor EA, Huang ZD, Chen YN, Brem H: Potentiation of cytotoxic cancer therapies by TNP-470 alone and with other anti-angiogenic agents. Int J Cancer 57: 920-925, 1994

    Google Scholar 

  68. Weingart JD, Sipos EP, Brem H: The role of minocycline in the treatment of intracranial 9L glioma. J Neurosurg 82: 635-640, 1995

    Google Scholar 

  69. Haroun RI, Bettegowda C, Li K, Brem H: Effect of Col-3, an anti-angiogenesis agent, on rat brain endothelial cell proliferation. Submitted for the Annual Meeting of the American Association of Neurological Surgeons 2000. San Francisco, CA, AANS

  70. Wojtowicz-Praga S: Clinical potential of matrix metalloprotease inhibitors. Drugs R D 1: 117-129, 1999

    Google Scholar 

  71. Grossman S, Fisher J, Piantadosi S, Brem H: The new approaches to brain tumor therapy (NABTT) CNS consortium: organization, objectives, and activities. Cancer Control 5: 107-114, 1998

    Google Scholar 

  72. Vassalli JD, Belin D: Amiloride selectively inhibits the urokinase-type plasminogen activator. FEBS Lett 214: 187-191, 1987

    Google Scholar 

  73. Caccamo DV, Keohane ME, McKeever PE: Plasminogen activators and inhibitors in gliomas: an immunohistochemical study. Mod Pathol 7: 99-104, 1994

    Google Scholar 

  74. Hsu DW, Efird JT, Hedley-Whyte ET: Prognostic role of urokinase-type plasminogen activator in human gliomas. Am J Pathol 147: 114-123, 1995

    Google Scholar 

  75. Landau BJ, Kwaan HC, Verrusio EN, Brem SS: Elevated levels of urokinase-type plasminogen activator and plasminogen activator inhibitor type-1 in malignant human brain tumors. Cancer Res 54: 1105-1108, 1994

    Google Scholar 

  76. Gladson DL, Pijuan-Thompson V, Olman MA, Gillespie GY, Yacoub IZ: Upregulation of urokinase and urokinase receptor genes in malignant astrocytoma. Am J Pathol 146: 1150-1160, 1995

    Google Scholar 

  77. Sparks RL, Pool TB, Smith NK, Cameron IL: Effects of amiloride on tumor growth and intracellular element content of tumor cells in vivo. Cancer Res 43: 73-77, 1983

    Google Scholar 

  78. Kellen JA, Mirakian A, Kolin A: Antimetastatic effect of amiloride in an animal tumour model. Anticancer Res 8: 1373-1376, 1988

    Google Scholar 

  79. Alliegro MC, Alliegro MA, Cragoe EJJ, Glaser BM: Amiloride inhibition of angiogenesis in vitro. J Exp Zool 267: 245-252, 1993

    Google Scholar 

  80. Avery RL, Connor TBJ, Farazdaghi M: Systemic amiloride inhibits experimentally induced neovascularization. Arch Ophthalmol 108: 1474-1476, 1990

    Google Scholar 

  81. Gibbons MC, Sipos EP, Tyler B, Pinn M, Brem H: The antiangiogenic agent amiloride inhibits tumor growth and prolongs survival in the rat 9L-glioma model (abstract). Annual Meeting of the Congress of Neurological Surgeons 1995. San Francisco, California

  82. Pruitt AW, McNay JL, Dayton PG: Transfer characteristics of triamterene and its analogues: central nervous system, placenta, and kidney. Drug Metab Dispos 3: 30-41, 1975

    Google Scholar 

  83. Garritsen A, Ijzerman AP, Beukers MW, Cragoe EJJ, Soudijn W: Interaction of amiloride and its analogues with adenosine A1 receptors in calf brain. Biochem Pharmacol 40: 827-834, 1990

    Google Scholar 

  84. Boehm T, Folkman J, Browder T, O'Reilly MS: Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390: 404-407, 1997

    Google Scholar 

  85. D'Amato RJ, Loughnan MS, Flynn E, Folkman J: Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91: 4082-4085, 1994

    Google Scholar 

  86. Burke M, Langer R, Brem H: Drug delivery to the central nervous system. In: Mathiowitz E (eds) The Encyclopedia of Controlled Drug Delivery. John Wiley and Sons, Inc., New York, 1999, pp 184-212

    Google Scholar 

  87. Sipos E, Tyler B, Piantadosi S, Burger P, Brem H: Optimizing interstitial delivery of BCNU from controlled release polymers for the treatment of brain tumors. Cancer Chemother Pharmacol 39: 383-389, 1997

    Google Scholar 

  88. Sills AK, Williams JI, Tyler BM, Epstein DS, Sipos EP, Davis JD, McLane MP, Pitchford S, Cheshire K, Gannon FH, Kinney WA, Chao TL, Donowitz M, Laterra J, Zasloff M, Brem H: Squalamine inhibits angiogenesis and solid tumor growth in vivo and perturbs embryonic vasculature. Cancer Res 58: 2784-2792, 1998

    Google Scholar 

  89. O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J: Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma (see comments). Cell 79: 315-328, 1994

    Google Scholar 

  90. O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J: Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88: 277-285, 1997

    Google Scholar 

  91. Brem H, Gresser I, Grosfeld J, Folkman J: The combination of antiangiogenic agents to inhibit primary tumor growth and metastasis. J Pediatr Surg 28: 1253-1257, 1993

    Google Scholar 

  92. Gagliardi A, Hadd H, Collins DC: Inhibition of angiogenesis by suramin. Cancer Res 52: 5073-5075, 1992

    Google Scholar 

  93. Wilks JW, Scott PS, Vrba LK, Cocuzza JM: Inhibition of angiogenesis with combination treatments of angiostatic steroids and suramin. Int J Radiat Biol 60: 73-77, 1991

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sipos, E.P., Brem, H. Local Anti-angiogenic Brain Tumor Therapies. J Neurooncol 50, 181–188 (2000). https://doi.org/10.1023/A:1006482120049

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006482120049

Navigation