Skip to main content
Log in

Functional aspects of the X-ray structure of mitochondrial creatine kinase: A molecular physiology approach

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Mitochondrial creatine kinase (Mi-CK) is a central enzyme in energy metabolism of tissues with high and fluctuating energy requirements. In this review, recent progress in the functional and structural characterization of Mi-CK is summarized with special emphasis on the solved X-ray structure of chicken Mib-CK octamer (Fritz-Wolf et al., Nature 381, 341-345, 1996). The new results are discussed in a historical context and related to the characteristics of CK isoforms as known from a large number of biophysical and biochemical studies. Finally, two hypothetical functional aspects of the Mi-CK structure are proposed: (i) putative membrane binding motifs at the top and bottom faces of the octamer and (ii) a possible functional role of the central 20 Å channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eggleton P, Eggleton GP: Further observations of phosphagens. J Physiol 65: 15–24, 1928

    Google Scholar 

  2. Lohman K: Über die enzymatische Aufspaltung der Kreatinphosphorsaure; zugleich ein Beitrag zum Chemismus der Muskelkontraktion. Biochem Z 271: 264–277, 1934

    Google Scholar 

  3. Lehmann H: Über die Umesterung des Adenylsäuresystems mit Phosphagenen. Biochem Z 286: 336–343, 1936

    Google Scholar 

  4. Lipmann F: Metabolic generation and utilization of phosphate bond energy. Adv Enymol 1: 99–162, 1941

    Google Scholar 

  5. Kuby SA, Noda L, Lardy HA: Adenosinetriphosphate-creatine transphosphorylase. I. Isolation of the crystalline enyme from rabbit muscle. J Biol Chem 209: 191–201, 1954

    Google Scholar 

  6. Kuby SA, Noltman EA: ATP-Creatine Transphosphorylase. In: PD Boyer, H Lardy, K Myrback (eds). The Enymes, Vol. 6. Academic Press, NY, 1963, pp 515–521

    Google Scholar 

  7. Burger A, Eppenberger M, Wiesman U, Richterich R: Isoenzyme der Kreatinkinase. Helv Physiol Acta 21: C6–C10, 1963

    Google Scholar 

  8. Eppenberger HM, Eppenberger M, Richterich R, Aebi H: The ontogeny of creatine kinase isozymes. Dev Biol 10: 1–16, 1964

    Google Scholar 

  9. Jacobs H, Heldt HW, Klingenberg M: High activity of creatine kinase in mitochondria from muscle and brain. Evidence for a separate mitochondrial isoenzyme of creatine kinase. Biochem Biophys Res Commun 16: 516–521, 1964

    Google Scholar 

  10. Klingenberg M: Muskelmitochondrien. In: K Kramer, O Krayer, E Lehnartz, A von Muralt, HH Weber (eds). Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie. Springer, Berlin, 1964, pp 132–189

    Google Scholar 

  11. Gercken G, Schlette U: Metabolite status of the heart in acute insuffciency due to 1-fluoro-2,4 dinitrobenzene. Experientia 24: 17–19, 1968

    Google Scholar 

  12. Naegle S: Die Bedeutung von Creatinphosphat und Adenosintriphosphat im Hinblick auf Energiebereitstellung,-transport und-verwertung in normalen und insuffzienten Herzmuskeln. Klin Wochenzeitschrift 48: 332–341, 1970

    Google Scholar 

  13. Bessman SP, Fonyo A: The possible role of the mitochondrial bound creatine kinase in regulation of mitochondrial respiration. Biochem Biophys Res Comm 22: 597–420, 1966

    Google Scholar 

  14. Saks VA, Khuchua ZA, Vasilyeva EV, Belikova OY, Kuznetsov AV: Metabolic compartmentation and substrate channelling in muscle cells. Role of coupled creatine kineses in in vivo regulation of cellular respiration-a synthesis. Mol Cell Biochem 133/134: 155–192, 1994

    Google Scholar 

  15. Turner D, Wallimann T, Eppenberger HM: A protein that binds specifically to the M-line of skeletal muscle is identified as the muscle form of creatine kinase. Proc Natl Acad Sci USA 70: 702–705, 1973

    Google Scholar 

  16. Wallimann T, Turner DC, Eppenberger HM: Localization of creatine kinase isoenzymes in myofibrils. I Chicken skeletal muscle. J Cell Biol 75: 297–317, 1977

    Google Scholar 

  17. Wallimann T: Creatinkinase-Isoenzyme und Myofibrillen-Struktur. Ph.D. Thesis ETH No. 5437, Swiss Federal Institute of Technology, Zürich, 1975

    Google Scholar 

  18. Saks VA, Rosenstraukh LV, Smirnov VN, Chazov EI: Role of creatine phosphokinase in cellular function and metabolism. Can J Physiol Pharmacol 56: 691–706, 1978

    Google Scholar 

  19. Bessman SP, Geiger PJ: Transport of energy in muscle: The phosphorylcreatine shuttle. Science 211: 449–452, 1981

    Google Scholar 

  20. McClellan G, Weisberg A, Winegrad S: Energy transport from mitochondria to myofibril by a creatine phosphate shuttle in cardiac cells. Am J Physiol 245: C423–C427, 1983

    Google Scholar 

  21. Bessmann SP, Carpenter CL: The creatine-creatine phosphate energy shuttle. Annu Rev Biochem 54: 831–862, 1985

    Google Scholar 

  22. Wallimann T, Eppenberger HM: Localization and function of M-linebound creatine kinase. M-band model and creatine phosphate shuttle. In: JW Shay (ed). Cell and Muscle Motility Vol. 6, Plenum Publ, NY, 1985, pp 239–285

    Google Scholar 

  23. Kammermeier H: Why do cells need phosphocreatine and a phosphocreatine shuttle. J Mol Cardiol 19: 115–118, 1987

    Google Scholar 

  24. Wallimann T, Schnyder T, Schlegel J, Wyss M, Wegmann G, Rossi AM, Hemmer W, Eppenberger HM, Quest AFG: Subcellular compartmentation of creatine kinase isoenzymes, regulation of CK and octameric structure of mitochondrial CK: Important aspects of the phosphoryl-creatine circuit. In: RJ Paul, G Elzinga, K Yamada (eds). Progress in Clinical and Biological Research. Vol. 315: ‘Muscle Energetics’, A.R. Liss, NY, 1989, pp 159–176

    Google Scholar 

  25. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM: Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: The ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281: 21–40, 1992

    Google Scholar 

  26. Wyss M, Smeitink J, Wevers RA, Wallimann T: Mitochondrial creatine kinase: A key enzyme of aerobic energy metabolism. Biochim Biophys Acta 1102: 119–166, 1992

    Google Scholar 

  27. Wallimann T: Dissecting the role of creatine kinase. The phenotype of ‘gene knockout’ mice deficient in a creatine kinase sheds new light on the physiological functions of the ‘phosphocreatine circuit’. Current Biol 1: 42–46, 1994

    Google Scholar 

  28. Saks VA, Ventura-Clapier R: Cellular Bioenergetics: Role of Coupled Creatine Kinases. Mol Cell Biol 133/134, 1994

  29. Meyer R, Sweeney HL, Kushmerick MJ: A simple analysis of the ‘phosphocreatine shuttle’. Am J Physiol 246: C365–377, 1984

    Google Scholar 

  30. Wallimann T, Hemmer W: Creatine kinase in non-muscle tissues and cells. Mol Cell Biochem 133/134: 193–220, 1994

    Google Scholar 

  31. Kaldis P, Kamp G, Piendl T, Wallimann T: Functions of creatine kinase isoenzymes in spermatozoa. Adv Dev Biochem 5: 275–312, 1997

    Google Scholar 

  32. Baskin RJ, Deamer DW: A membrane-bound creatine phosphokinase in fragmented sarcoplasmic reticulum. J Biol Chem 245: 1345–1347, 1970

    Google Scholar 

  33. Levitsky DO, Levchenko TS, Saks VA, Sharov VG, Smirnov: The role of creatine phosphokinase in supplying energy for the calcium pump system of heart sarcoplasmic reticulum. Membrane Biochem 2: 81–96, 1978

    Google Scholar 

  34. Rossi AM, Eppenberger HM, Volpe P, Cotrufo R, Wallimann T: Muscletype MM-creatine kinase is specifically bound to sarcoplasmic reticulum and can support Ca2+-uptake and regulate local ATP/ADP ratios. J Biol Chem 265: 5258–5266, 1990

    Google Scholar 

  35. Korge P, Byrd SK, Campbell KB: Functional coupling between sarcoplasmic-reticulum-bound creatine kinase and Ca2+-ATPase. Eur J Biochem 213: 973–980, 1993

    Google Scholar 

  36. Minajeva A, Ventura-Clapier R, Veksler V: Ca2+-uptake by cardiac sarcoplasmic reticulum ATPase in situ strongly depends on bound creatine kinase. Pflügers Arch Eur J Physiol 432: 904–912, 1996

    Google Scholar 

  37. Steeghs K, Benders A, Oerlemans F, deHaan A, Heerschap A, Ruitenbeek W, Jost C, vanDeursen J, Perryman B, Pette D, Brückwilder M, Koudijs J, Jap P, Veerkamp J, Wieringa B: Altered Ca2+-homeostasis in muscles with combined mitochondrial and cytosolic CK deficiencies. Cell 89: 93–103, 1997

    Google Scholar 

  38. Brosnan JM, Chen L, Wheeler CE, vanDyke TA, Koretzky AP: Phosphocreatine protects ATP from a fructose load in transgenic mouse liver expressing creatine kinase. Am J Physiol 260: C1191–C1200, 1991

    Google Scholar 

  39. Miller K, Halow J, Koretzky AP: Phosphocreatine protects transgenic mouse liver expressing creatine kinase from hypoxia and ischemia. Am J Physiol 265: C1544–C1551, 1993

    Google Scholar 

  40. Satoh S, Tanaka A, Hatano E, Inomoto T, Iwata S, Kitai T, Shinohara H, Tsunekawa S, Chance B, Yamaoka Y: Energy metabolism and regeneration in transgenic mouse livers expressing creatine kinase after major hepatectomy. Gastroenterol 110: 1166–1174, 1996

    Google Scholar 

  41. McFarland EW, Kushmerick MJ, Moerland T: Activity of creatine kinase in a contracting mammalian muscle of uniform fibre type. Biophys J 67: 1912–1924, 1994

    Google Scholar 

  42. Wiseman RW, Kushmerick M: Creatine kinase equilibrium follows solution thermodynamics in skeletal muscle: 31P-NMR studies using creatine analogs. J Biol Chem 270: 12428–12438, 1995

    Google Scholar 

  43. VanDeursen J, Ruitenbeek W, Heerschap A, Jap P, Terlaak H, Wieringa B: Creatine kinase (CK) in skeleteal muscle energy metabolism: A study of mouse mutants with graded expression in muscle CK expression. Proc Natl Acad Sci USA 91: 9091–9095, 1994

    Google Scholar 

  44. Wallimann T: 31P-NMR-measured creatine kinase reaction flux in muscle: A caveat! J Muscle Res Cell Motil 17: 177–181, 1996

    Google Scholar 

  45. Williams JP, Headrick JP: Differences in nucleotide compartmentation and energy state in isolated an in situ rat heart: Assessment by 31P-NMR spectroscopy. Biochim Biophys Acta 1276: 71–79, 1996

    Google Scholar 

  46. Dzeja PP, Zeleznikar RJ, Goldberg ND: Suppression of creatine kinasecatalyzed phosphotransfer results in increased phosphoryl transfer by adenylate kinase in intact skeletal muscle. J Biol Chem 271:12847–12851, 1996

    Google Scholar 

  47. Fritz-Wolf K, Schnyder T, Wallimann T, Kabsch W: Structure of mitochondrial creatine kinase. Nature 381: 341–345, 1996

    Google Scholar 

  48. Wyss M, Wallimann T: Metabolite channelling in aerobic energy metabolism. J theor Biol 158: 129–132, 1992

    Google Scholar 

  49. Keutel HJ, Jacobs HK, Okabe K, Yue RH, Kuby SA: Studies on adenosine triphosphate transphosphorylases. VII. Isolation of the crystalline adenosine triphosphate-creatine transphosphorylase from calf brain. Biochemistry 7: 4283–4290, 1968

    Google Scholar 

  50. McPherson A: A preliminary crystallographic investigation of rabbit muscle creatine kinase. J Mol Biol 81: 83–86, 1973

    Google Scholar 

  51. Burgess AN, Liddell JM, Cook W, Tweedlie RM, Swan IDA: Creatine kinase. A new crystal form providing evidence of subunit structural homogeneity. J Mol Biol 123: 691–695, 1978

    Google Scholar 

  52. Takasawa T, Fukushi K, Shiokawa H: Crystallization and properties of creatine kinase from equine skeletal muscle. J Biochem 89: 1619–1631, 1981

    Google Scholar 

  53. Gilliland GL, Sjolin L, Olsson GL: Crystallization and preliminary X-ray diffraction data of two crystal forms of bovine heart creatine kinase. J Mol Biol 170: 791–793, 1983

    Google Scholar 

  54. Hershenson S, Helmers N, Desmueles P, Stroud R: Purification and crystallization of creatine kinase from rabbit skeletal muscle. J Biol Chem 261: 3732–3736, 1986

    Google Scholar 

  55. Schnyder T, Sargent DF, Richmond TJ, Eppenberger HM, Wallimann T: Crystallization and preliminary X-ray analysis of two different forms of mitochondrial creatine kinase from chicken cardiac muscle. J Mol Biol 216: 809–812, 1990

    Google Scholar 

  56. Schnyder T, Winkler H, Gross H, Eppenberger HM, Wallimann T: Crystallization of mitochondrial creatine kinase. Growing of large protein crystals and electron microscopic investigation of microcrystals consisting of octamers. J Biol Chem 266: 5318–5322, 1991

    Google Scholar 

  57. Furter R, Kaldis P, Furter-Graves EM, Schnyder T, Eppenberger HM, Wallimann T: Expression of active octameric chicken cardiac mitochondrial creatine kinase in Escherichia coli. Biochem J 288: 771–775, 1992

    Google Scholar 

  58. Jones TA, Zou JY, Cowan SW, Kjelgaard M: Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Cryst A47: 110–119, 1991

    Google Scholar 

  59. Brünger AT: X-PLOR Version 3.1 Manual. Yale University Press, New Haven, USA, 1992

    Google Scholar 

  60. Kabsch W, Sander C: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22: 2577–2637, 1983

    Google Scholar 

  61. Gross M: The tryptophan residues of mitochondrial creatine kinase: Roles in enzyme structure and function. Ph.D.Thesis ETH No. 10719, Swiss Federal Institute of Technology, Zürich, 1994

    Google Scholar 

  62. Wyss M, James P, Schlegel J, Wallimann T: Limited proteolysis of creatine kinase. Implications for the three-dimensional structure and for conformational substates. Biochemistry 32: 10727–10735, 1993

    Google Scholar 

  63. Morris GE, Jackson PJ: Identification by protein microsequencing of a proteinase-V8-cleavage site in a folding intermediate of chick muscle creatine kinase. Biochem J 280: 809–811, 1991

    Google Scholar 

  64. Gross M, Wyss M, Furter-Graves EM, Wallimann T, Furter R: Reconstitution of active octameric mitochondrial creatine kinase from two genetically engineered fragments. Protein Sci 5: 320–330, 1996

    Google Scholar 

  65. Schlegel J, Zurbriggen B, Wegmann G, Wyss M, Eppenberger HM, Wallimann T: Native mitochondrial creatine kinase (Mi-CK) forms octameric structures. I. Isolation of two interconvertible Mi-CK isoforms: Dimeric and octameric Mi-CK. J Biol Chem 263: 16942–16953, 1988

    Google Scholar 

  66. Gross M, Wallimann T: Kinetics of assembly and dissociation of the mitochondrial creatine kinase octamer. A fluorescence study. Biochemistry 32: 13933–13940, 1993

    Google Scholar 

  67. Gross M, Furter-Graves EM, Wallimann T, Eppenberger HM, Furter R: The tryptophan residues of mitochondrial creatine kinase: Roles of Trp-223, Trp-206, and Trp-264 in active-site and quaternary structure formation. Protein Sci 3: 1058–1068, 1994

    Google Scholar 

  68. Kaldis P, Furter R, Wallimann T: The N-terminal heptapeptide of mitochondrial creatine kinase is important for octamerization. Biochemistry 33: 952–959, 1994

    Google Scholar 

  69. Beuchter DD, Medzihradsky KF, Burlingame AL, Kenyon GL: The active site of creatine kinase. Affinity labeling of cysteine 282 with epoxycreatine. J Biol Chem 267: 2172–2178, 1992

    Google Scholar 

  70. Hou LX, Vollmer S: The activity of S-thiomethyl modified creatine kinase is due to the regeneration of free thiol at the active site. Biochim Biophys Acta 1205: 83–88, 1994

    Google Scholar 

  71. Stroud RM: Balancing ATP in the cell. Nature Struct Biol 3: 567–569, 1996

    Google Scholar 

  72. Furter R, Furter-Graves EM, Wallimann T: Creatine kinase: The reactive cysteine is required for synergism but is nonessential for catalysis. Biochemistry 32: 7022–7029, 1993

    Google Scholar 

  73. Rosevear PR, Desmeules P, Kenyon GL, Mildvan AS: Nuclear magnetic resonance studies of the role of histidine residues at the active site of rabbit muscle creatine kinase. Biochemistry 20: 6155–6164, 1981

    Google Scholar 

  74. Cook PF, Kenyon GL, Cleland WW: Use of pH studies to elucidate the catalytic mechanism of rabbit muscle creatine kinase. Biochemistry 20: 1204–1210, 1981

    Google Scholar 

  75. Forstner M, Müller A, Stolz M, Wallimann T: The active site histidines of creatine kinase. A critical role of His61 situated on a flexible loop. Prot Sci 6: 331–339, 1997

    Google Scholar 

  76. Chen LH, Borders CL, Vásquez JR, Kenyon GL: Rabbit muscle creatine kinase: Consequences of the mutagenesis of conserved histidine residues. Biochemistry 35: 7895–7902, 1996

    Google Scholar 

  77. Messmer CH, Kägi JHR: Tryptophan residues of creatine kinase: A fluorescence study. Biochemistry 24: 7172–7178, 1985

    Google Scholar 

  78. Mühlebach SM, Gross M, Wirz T, Wallimann T, Perriard JC, Wyss M: Sequence homology and structure predictions of the creatine kinase isozymes. Mol Cell Biochem 133/134: 245–262, 1994

    Google Scholar 

  79. Vasàk M, Nagayama K, Wüthrich K, Mertens M, Kägi JHR: Creatine kinase. Nuclear magnetic resonance and fluorescence evidence for interaction of adenosine-5'-diphosphate with aromatic residue(s). Biochemistry 18, 5050–5055, 1979

    Google Scholar 

  80. Forstner M, Kriechbaum M, Laggner P, Wallimann T: Changes of creatine kinase structure upon ligand binding as seen by small-angle scattering. J Mol Struct 383: 217–222, 1996

    Google Scholar 

  81. Jacobus WE, Lehninger AL: Creatine kinase of rat heart mitochondria. Coupling of creatine phosphorylation to electron transport. J Biol Chem 248: 4803–4810, 1973

    Google Scholar 

  82. Schnyder T, Rojo M, Furter R, Wallimann T: The structure of mitochondrial creatine kinase and its membrane binding properties. Mol Cell Biochem 133/134: 115–123, 1994

    Google Scholar 

  83. Saks VA, Kuznetsov AV, Kupriyanov VV, Miceli MV, Jacobus WE: Creatine kinase of rat mitochondria: The demonstration of functional coupling to oxidative phosphorylation in an inner membrane matrix preparation. J Biol Chem 260: 7757–7764, 1985

    Google Scholar 

  84. Stachowiak O, Dolder M and Wallimann T: Membrane-binding and vesicle cross-linking kinetics of the mitochondrial creatine kinase octamer. Biochemistry 35: 15522–15528, 1996

    Google Scholar 

  85. Lipskaya TY, Templ VD, Belousova LV, Molokova EV, Rybina IV: Investigation of the interaction of mitochondrial creatine kinase with the membranes of the mitochondria. Biochimia USSR 45: 877–886, 1980

    Google Scholar 

  86. Müller M, Moser R, Cheneval D, Carafoli E: Cardiolipin is the membrane receptor for mitochondrial creatine phosphokinase. J Biol Chem 260: 3839–3843, 1985

    Google Scholar 

  87. Brooks SPJ, Suelter CH: Asociation of chicken mitochondrial creatine kinase with the inner mitochondrial membrane. Arch Biochem Biophys 253: 122–132, 1987

    Google Scholar 

  88. Rojo M, Hovius R, Demel RA, Wallimann T: Interaction of mitochondrial creatine kinase with model membranes. A monolayer study. FEBS Lett 281: 123–129, 1991

    Google Scholar 

  89. Cheneval D, Carafoli E, Powell GL, Marsh D: A spin-label electron spin resonance study of the binding of mitochondrial creatine kinase to cardiolipin. Eur J Biochem 186: 415–419, 1989

    Google Scholar 

  90. De Kruijff B, Verkleij AJ, van Echteld CJA, Gerritsen WJ, Noordam PC, Mombers C, Rietveld A, de Gier J, Cullis PR, Hope MJ, Nayar R: Nonbilayer lipids and the inner mitochondrial membrane. In: HG Schweuger (ed). International Cell Biology. Springer-Verlag, Berlin, 1981, pp 559–671

    Google Scholar 

  91. Rietveld AG, Koorengevel MC, de Kruijff B: Non-bilayer lipids are required for efficient protein transport across the plasma membrane of Escherichia coli. EMBO J 22: 5506–5513, 1995

    Google Scholar 

  92. Font B, Eichenberger D, Goldschmidt D, Vial C: Interaction of creatine kinase and hexokinase with the mitochondrial membranes, and selfassociation of creatine kinase: crosslinking studies. Mol Cell Biochem 78: 131–140, 1987

    Google Scholar 

  93. De Pinto V, Palmieri F: Transmembrane arrangement of mitochondrial porin or voltage-depemdant anionchannel (VDAC). J Bioenerg Biomembr 24: 21–26, 1992

    Google Scholar 

  94. Kottke M, Adams V, Wallimann T, Nalam VK, Brdiczka D: Location and regulation of octameric mitochondrial creatine kinase in the contact sites. Biochem Biophys Acta 1061: 215–225, 1991

    Google Scholar 

  95. Brdiczka D, Kaldis P, Wallimann T: In vitro complex formation between the octamer of mitochondrial creatine kinase and porin. J Biol Chem 269: 27640–27644, 1994

    Google Scholar 

  96. Beutner G, Rück A, Riede B, Welte W, Brdiczka D: Complexes between kinases, mitochondrial porin and adenylate translocator in rat brain resemble the permeability transition pore. FEBS Lett 396: 189–195, 1996

    Google Scholar 

  97. Beyer K, Klingenberg M: ADP/ATP carrier protein from beef heart mitochondria has high amounts of tightly bound cardiolipin, as revealed by 31P nuclear magnetic resonance. Biochemistry 24: 8321–8326, 1985

    Google Scholar 

  98. Drees M and Beyer K: Interaction of phospholipids with the detergentsolubilized ADP/ATP carrier protein as studied by spin-label electron spin resonance. Biochemistry 27: 8584–8591, 1988

    Google Scholar 

  99. Cheneval D, Carafoli E: Identification and primary structure of the cardiolipin-binding domain of mitochondrial creatine kinase. Eur J Biochem 171: 1–9, 1988

    Google Scholar 

  100. Saks VA, Khuchua ZA, Kuznetsov AV: Specific inhibition of ATP-ADP translocase in cardiac mitoplasts by antibodies against mitochondrial creatine kinase. Biochim Biophys Acta 891: 138–144, 1987

    Google Scholar 

  101. Schnyder T, Engel A, Lustig A, Wallimann T: Native mitochondrial creatine kinase (Mi-CK) forms octameric structures. II. Characterization of dimers and octamers by ultracentrifugation, direct mass measurement by STEM and image analysis of single Mi-CK octamers. J Biol Chem 263: 16954–16962, 1988

    Google Scholar 

  102. Schnyder T, Gross H, Winkler H, Eppenberger HM, Wallimann T: Structure of the mitochondrial creatine kinase octamer: High resolution shadowing and image averaging of single molecules and formation of linear filaments under specific staining conditions. J Cell Biol 112: 95–101, 1991

    Google Scholar 

  103. Schnyder T, Cyrklaff M, Fuchs K, Wallimann T: Crystallization of mitochondrial creatine kinase on negatively charged lipid layers. J Struct Biol 112: 136–147, 1994

    Google Scholar 

  104. Wyss M, Maugham D, Wallimann T: Re-evaluation of the structure and physiological function of guanidino kinases in fruitfly (Drosophila), sea urchin (Psamechinus miliaris) and man. Biochem J 309: 255–261, 1995

    Google Scholar 

  105. Quemeneur E, Eichenberger D, Goldschmidt D, Vial C, Beauregard G, Potier M: The radiation inactivation method provides evidence that membrane-bound mitochondrial creatine kinase is an oligomer. Biochem Biophys Res Comm 153: 1310–1314, 1988

    Google Scholar 

  106. Fedosov SN, Belousova LV, Plesner IW: A model of mitochondrial creatine kinase binding to membranes: Adsorption constants, essential amino acids and the effect of ionic strength. Biochem Biophys Acta 1153: 322–330, 1993

    Google Scholar 

  107. Bogner W, Aquila H, Klingenberg M: The transmembrane arrangement of the ADP/ATP carrier as elucidated by the Iysine reagent pyridoxal 5-phosphate. Eur J Biochem 161: 611–620, 1986

    Google Scholar 

  108. Ovadi J: Cell Architecture and Metabolic Channeling. Springer-Verlag, Heidelberg, 1995

    Google Scholar 

  109. Anderson KS, Kim AY, Quillen JM, Sayers E, Yang XJ, Miles EW: Kinetic characterization of channel impaired mutants of tryptophan synthase. J Biol Chem 270: 29936–29944, 1995

    Google Scholar 

  110. Chumachenko YV: Some evidence in favour of the partnership between rabbit muscle aldolase and glyceraldehyde 3-phosphate dehydrogenase in the consecutive reactions. Ukr Biokhim Zh 66: 52–70, 1994

    Google Scholar 

  111. Agius L, Sherratt HSA (eds).: Channelling in Intermediary Metabolism. Portland Press, London and Miami, 1997

    Google Scholar 

  112. Gellerich FN, Schlame M, Bohnensack R, Kunz W: Dynamic compartmentation of adenine nucleotides in the mitochondrial intermembrane space of rat-heart mitochondria. Biochim Biophys Acta 890: 117–126, 1987

    Google Scholar 

  113. Gellerich FN, Kunz W: Cause and consequences of dynamic compartmentation of adenine nucleotides in the mitochondrial intermembrane space in respect to exchange of energy rich phosphates between cytosol and mitochondria. Biomed Biochim Acta 46: 545–548, 1987

    Google Scholar 

  114. Yount RG, Lawson D, Rayment I: Is Myosin a ‘back door’ enzyme? Biophys J 68: 44s–49s, 1995

    Google Scholar 

  115. Gilson MK, Straatsma TP, McCammon JA, Ripoll DR, Faerman CH, Axelsen PH, Silman I, Sussman JL: Open ‘back door’ in a molecular dynamics simulation of acetylcholinesterase. Science: 263, 1276–1278, 1994

    Google Scholar 

  116. Hyde CC, Ahmed SA, Padlan EA, Miles EW, Davies DR: Threedimensional structure of the tryptophan synthase α2β2 multienzyme complex from Salmonella typhimurium. J Biol Chem 263: 17857–17871, 1988

    Google Scholar 

  117. Boehm EA, Radda GK, Tomlin H, Clark JF: The utilisation of creatine and its analogues by cytosolic and mitochondrial creatine kinase. Biochim. Biophys. Acta 1274: 119–128, 1996

    Google Scholar 

  118. Kenyon GL: Creatine kinase shapes up. Nature 381: 281–282, 1996

    Google Scholar 

  119. Milner-White EJ, Watts DC: Inhibition of adenosine 5'-triphosphatecreatine phosphotransferase by substrate-anion complexes. Evidence for the transition-state organization of the catalytic site. Biochem J 122: 717–740, 1971

    Google Scholar 

  120. Chida K, Tsunenaga M, Kasahara K, Kohno Y, Kuroki T: Regulation of creatine phosphokinase B activity by protein kinase C. Biochem Biophys Res Commun 173: 346–350, 1990

    Google Scholar 

  121. Hemmer W, Skarli M, Perriard JC, Wallimann T: Effect of okadoic acid on protein phosphorylation patterns of chicken myogenic cells with special reference to creatine kinase. FEBS Lett 327: 35–40, 1993

    Google Scholar 

  122. Martin KJ, Chen SF, Clark GM, Degen D, Wajima M, Von Hoff DD, Kaddurah-Daouk R: Evaluation of creatine analogues as a new class of anticancer agents using freshly explanted human tumor cells. J Natl Cancer Inst 86: 608–613, 1994

    Google Scholar 

  123. Teicher BA, Menon K, Northey D, Liu J, KuDe DW, Kaddurah-Daouk R: Cyclocreatine in cancer chemotherapy. Cancer Chemother Pharmacol 35: 411–416, 1995

    Google Scholar 

  124. Sayle RA, Milner-White EJ: RASMOL: Biomolecular graphics for all. Trends Biochem Sci 20: 374, 1995

    Google Scholar 

  125. Van Dorsten FA, Wyss M, Wallimann T, Nicolay K: Activation of seaurchin sperm motility is accompanied by an increase in the creatine kinase exchange flux. Biochem J 325: 411–416, 1997

    Google Scholar 

  126. Aliev MK, Saks VA, Compartmentalized energy transfer in cardiomyocytes: Use of mathematical modeling for analysis of in vivo regulation of respiration. Biophys J 73: 428–445, 1997

    Google Scholar 

  127. Zhou G, Parthasarathy G, Somasundaram T, Ables A, Roy L, Strong SJ, Ellington WR, Chapman MS: Expression, purification from inclusion bodies, and crystal characterization of a transition state analog complex of arginin kinase: A model for studying phosphagen kinases. Prot Sci 6: 444–449, 1997

    Google Scholar 

  128. Vacheron MJ, Clottes E, Chautard C, Vial C: Mitochondrial creatine kinase interaction with phospholipid vesicles. Arch Biochem Biophys 344: 316–324, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlattner, U., Forstner, M., Eder, M. et al. Functional aspects of the X-ray structure of mitochondrial creatine kinase: A molecular physiology approach. Mol Cell Biochem 184, 125–140 (1998). https://doi.org/10.1023/A:1006851330913

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006851330913

Navigation