Skip to main content
Log in

Endoplasmic reticulum degradation. Reverse protein transport and its end in the proteasome

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Degradation of misfolded or unassembled proteins of the secretory pathway is an essential function of the quality control system of the Endoplasmic Reticulum (ER). Using yeast as a model organism we show that a mutated and therefore misfolded soluble lumenal protein carboxypeptidase yscY (CPY*), and a polytopic membrane protein, the ATP-binding cassette transporter Pdr5 (Pdr5*), are retrograde transported out of the ER and degraded via the cytoplasmic ubiquitin-proteasome system. Retrograde transport depends on an intact Sec61 translocon. Complete import of CPY* into the lumen of the ER requests a new targeting mechanism for retrograde transport of the malfolded enzyme through the Sec61 channel to occur. For soluble CPY*, but not for the polytopic membrane protein Pdr5* action of the ER-lumenal Hsp70 chaperone Kar2 is necessary to deliver the protein to the ubiquitin-proteasome machinery. Polyubiquitination of CPY* and Pdr5* by the ubiquitin conjugating enzymes Ubc6 and Ubc7 is crucial for degradation to occur. Also transport of CPY* out of the ER-lumen depends on ubiquitination. Newly discovered proteins of the ER membrane, Der1, Der3/Hrd1, and Hrd3 are specifically involved in the retrograde transport processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rapoport TA, Jungnickel B & Kutay U (1996) Annu. Rev. Biochem. 65: 271–303

    Google Scholar 

  2. Gaut JR & Hendershot LM (1993) Curr. Opin. Cell Biol. 5: 589–595

    Google Scholar 

  3. Klausner RD & Sitia R (1990) Cell 62: 611–614

    Google Scholar 

  4. Bonifacino JS & Klausner RD (1994). In: Ciechanover AE & Schwartz AL (Eds) Modern Cell Biology, Cellular Proteolysis Systems (Vol. 15, pp. 137–160) Wiley-Liss., New York

    Google Scholar 

  5. Hieter P, Bassett Jr, DE & Valle D (1996) Nature Genet. 13: 253–255

    Google Scholar 

  6. Kopito RR (1997) Cell 88: 427–430

    Google Scholar 

  7. Sommer T & Wolf DH (1997) FASEB J. 11: 1227–1233

    Google Scholar 

  8. Wolf DH & Fink GR (1975) J. Bacteriol. 123: 1150–1156

    Google Scholar 

  9. Finger A, Knop M & Wolf DH (1993) Eur. J. Biochem. 218: 565–574

    Google Scholar 

  10. Egner R, Rosenthal FE, Kralli A, Sanglard D & Kuchler K (1998) Mol. Biol. Cell 9: 523–543

    Google Scholar 

  11. Hiller MM, Finger A, Schweiger M & Wolf DH (1996) Science 273: 1725–1728

    Google Scholar 

  12. Biederer T, Volkwein C & Sommer T (1997) Science 278: 1806–1809

    Google Scholar 

  13. Bordallo J, Plemper RK, Finger A & Wolf DH (1998) Mol. Biol. Cell 9: 209–222

    Google Scholar 

  14. Blobel G (1995) Cold Spring Harbor Symp. Quant. Biol. 60: 1–10

    Google Scholar 

  15. Plemper RK, Böhmler S, Bordallo J, Sommer T & Wolf DH (1997) Nature 388: 891–895

    Google Scholar 

  16. Dürr G, Strayle J, Plemper R, Elbs S, Klee S, Catty P, Wolf DH & Rudolph HK (1998) Mol. Biol. Cell 9: 1149–1162

    Google Scholar 

  17. Plemper RK, Deak PM, Otto RT & Wolf DH (1999) FEBS Lett. 443: 241–245

    Google Scholar 

  18. Knop M, Finger A, Braun T, Hellmuth K & Wolf DH (1996) EMBO J. 15: 753–763

    Google Scholar 

  19. Hampton RY, Gardner RG & Rine J (1996) Mol. Biol. Cell 7: 2029–2044

    Google Scholar 

  20. Jensen TJ, Loo MA, Pind S, Williams DB, Goldberg AL & Riordan JR (1995) Cell 83: 129–135

    Google Scholar 

  21. Ward CL, Omura S & Kopito RR (1995) Cell 83: 121–127

    Google Scholar 

  22. Egner R, Mahé Y, Pandjaitan R & Kuchler K (1995) Mol. Cell Biol. 15: 5879–5887

    Google Scholar 

  23. Plemper RK, Egner R, Kuchler K & Wolf DH (1998) J. Biol. Chem. 273: 32848–32856

    Google Scholar 

  24. Hamman BD, Hendershot LM & Johnson AE (1998) Cell 92: 747–758

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plemper, R.K., Wolf, D.H. Endoplasmic reticulum degradation. Reverse protein transport and its end in the proteasome. Mol Biol Rep 26, 125–130 (1999). https://doi.org/10.1023/A:1006913215484

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006913215484

Navigation