Skip to main content
Log in

A semiempirical study on inhibition of catechol O-methyltransferase by substituted catechols

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Catechol and endogenous catechol derivatives are readily methylated by catechol O-methyltransferase (COMT). In contrast, many catechol derivatives possessing electronegative substituents are potent COMT inhibitors. The X-ray structure of the active site of COMT suggests that the methylation involves a lysine as a general base. The lysine can activate one of the catecholic hydroxyl groups for a nucleophilic attack on the active methyl group of the coenzyme S-adenosyl-l-methionine (AdoMet). We studied the effect of dinitrosubstitution of the catecholic ring at the semiempirical PM3 level on the methylation reaction catalysed by COMT. The electronegative nitro groups make the ionized catechol hydroxyls less nucleophilic than the corresponding hydroxyl groups of the non-substituted catechol. As a consequence, dinitrocatechol is not methylated but is instead a potent COMT inhibitor. The implications of this mechanism to the design of COMT inhibitors are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Männistö, P.T., Ulmanen, I., Lundström, K., Taskinen, J., Tenhunen, J., Tilgmann, C. and Kaakkola, S., In Juner, E. (Ed.) Progress in Drug Research, Birkhäuser Verlag, Basel, 1992, pp. 291–350.

    Google Scholar 

  2. Flohe, L. and Schwabe, K., Biochim. Biophys. Acta, 220 (1970) 469.

    Google Scholar 

  3. Coward, J.K., Slisz, E.P. and Wu, F.Y.-H., Biochemistry, 12 (1973) 2291.

    Google Scholar 

  4. Borchardt, R.T., J. Med. Chem., 16 (1973) 377.

    Google Scholar 

  5. Woodard, R.W., Tsai, M.-D., Floss, H.G., Crooks, P.A. and Coward, J.K., J. Biol. Chem., 255 (1980) 9124.

    Google Scholar 

  6. Malherbe, P., Bertocci, B., Caspers, P., Zürcher, G. and Da Prada, M., J. Neurochem., 58 (1992) 1782.

    Google Scholar 

  7. Lotta, T., Vidgren, J., Tilgmann, C., Ulmanen, I., Melén, K., Julkunen, I. and Taskinen, J., Biochemistry, 34 (1995) 4202.

    Google Scholar 

  8. Borchardt, R.T., In Usdin, E. (Ed.) Structure and Function of Monoamine Enzymes, Marcel Dekker, New York, NY, 1977, pp. 707–726.

    Google Scholar 

  9. Knipe, J.O., Vasquez, P.J. and Coward, J.K., J. Am. Chem. Soc., 104 (1982) 3202.

    Google Scholar 

  10. Thakker, D.R., Boehlert, C., Kirk, K.L., Antkowiak, R. and Creveling, C.R., J. Biol. Chem., 261 (1986) 178.

    Google Scholar 

  11. Creveling, C.R., Dalgard, N., Shimizu, H. and Daly, J.W., Mol. Pharmacol., 6 (1970) 691.

    Google Scholar 

  12. Borchardt, R.T. and Huber, J.A., J. Med. Chem., 25 (1982) 321.

    Google Scholar 

  13. Vidgren, J., Svensson, L.A. and Liljas, A., Nature, 368 (1994) 354.

    Google Scholar 

  14. Bäckström, R., Honkanen, E., Pippuri, A., Kairisalo, P., Pystynen, J., Heinola, K., Nissinen, E., Lindén, I.-B., Männistö, P., Kaakkola, S. and Pohto, P., J. Med. Chem., 32 (1989) 841.

    Google Scholar 

  15. Borgulya, J., Bruderer, H., Bernauer, K., Zurcher, G. and Da Prada, M., Helv. Chim. Acta, 72 (1989) 952.

    Google Scholar 

  16. Kaakkola, S., Gordin, A. and Männistö, P.T., Gen. Pharmacol., 25 (1994) 813.

    Google Scholar 

  17. Taskinen, J., Vidgren, J., Ovaska, M., Bäckström, R., Pippuri, A. and Nissinen, E., Quant. Struct.-Act. Relatsh., 8 (1989) 210.

    Google Scholar 

  18. Lotta, T., Taskinen, J., Bäckström, R. and Nissinen, E., J. Comput.-Aided Mol. Design, 6 (1992) 253.

    Google Scholar 

  19. Vidgren, J. and Ovaska, M., In Veerapandian, P. (Ed.) Structure-Based Drug Design, Marcel Dekker, New York, NY, 1997, pp. 343–363.

    Google Scholar 

  20. Mulholland, A.J., Grant, G.H. and Richards, W.G., Protein Eng., 6 (1993) 133.

    Google Scholar 

  21. Peräkylä, M. and Pakkanen, T.A., J. Am. Chem. Soc., 115 (1993) 10958.

    Google Scholar 

  22. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer Jr., E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.

    Google Scholar 

  23. Stewart, J.J.P., J. Comput. Chem., 10 (1989) 209.

    Google Scholar 

  24. Schröder, S., Daggett, V. and Kollman, P.A., J. Am. Chem. Soc., 113 (1991) 8922.

    Google Scholar 

  25. Rzepa, H.S. and Yi, M.Y., J. Chem. Soc. Perkin Trans., 2 (1991) 531.

    Google Scholar 

  26. Furuki, F., Sakurai, M. and Inoue, Y., J. Comput. Chem., 16 (1995) 378.

    Google Scholar 

  27. Wikberg, T., Biotransformation and Bioanalytics of Nitecapone and Entacapone, Ph.D. Thesis, University of Helsinki, Helsinki, Finland, 1993, p. 29.

    Google Scholar 

  28. Toney, M.D. and Kirsch, J.F., Science, 243 (1989) 1485.

    Google Scholar 

  29. Zheng, Y.-J. and Bruice, T.C., J. Am. Chem. Soc., 119 (1997) 8137.

    Google Scholar 

  30. Kraulis, P.J., J. Appl. Crystallogr., 24 (1991) 946.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ovaska, M., Yliniemelä, A. A semiempirical study on inhibition of catechol O-methyltransferase by substituted catechols. J Comput Aided Mol Des 12, 301–307 (1998). https://doi.org/10.1023/A:1007965026738

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007965026738

Navigation