Skip to main content
Log in

Pharmacogenetics as a Molecular Basis for Individualized Drug Therapy: The Thiopurine S-methyltransferase Paradigm

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Genetic polymorphism of drug metabolizing enzymes can be the major determinant of inter-individual differences in drug disposition and effects. In this mini-review, the evolution of pharmacogenetic studies, from the recognition of phenotypic polymorphisms to the discovery of genetic mutations responsible for these inherited traits, is illustrated by the genetic polymorphism of thiopurine S-methyltransferase (TPMT). TPMT, which exhibits autosomal co-dominant polymorphism, plays an important role in metabolism of the antileukemic and immunosuppressive medications, mercaptopurine, thioguanine, and azathioprine. The genetic polymorphism of TPMT activity in humans was first reported in 1980, and in the last five years the genetic basis for this polymorphism has been elucidated. Isolation and cloning of mutant alleles from humans with TPMT deficiency has identified the major mutant alleles, established the basis for loss of TPMT activity and permitted development of PCR-based genotyping assays to make a molecular diagnosis of TPMT-deficiency and heterozygosity. These studies illustrate the potential clinical benefits of elucidating the molecular basis of inherited differences in drug metabolism and disposition, and future automation of molecular diagnostics will make it feasible to more precisely select the optimal drug and dosage for individual patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. W. Kalow and D. R. Gunn. Some statistical data on atipical cholinesterase of human serum. Ann. Hum. Genet. 23:239-250 (1998).

    Google Scholar 

  2. D. M. Grant. Molecular genetics of the N-acetyltransferases. Pharmacogenetics 3:45-50 (1993).

    Google Scholar 

  3. U. A. Meyer and U. M. Zanger. Molecular mechanisms of genetic polymorphisms of drug metabolism. Ann. Rev. Pharmacol. Toxicol. 37:269-296 (1997).

    Google Scholar 

  4. M. Eichelboum and A. S. Gross. The genetic polymorphism of debrisoquine/sparteine metabolism—clinical aspects. Pharm. Ther. 46: 377-394 (1990).

    Google Scholar 

  5. A. V. Boddy and M. J. Ratain. Pharmacogenetics in cancer etiology and chemotherapy. Clin. Cancer Res. 3:1025-1030 (1997).

    Google Scholar 

  6. K. D. Tew. Genetic polymorphisms of detoxification enzymes. Cell. Pharmacol. 3:143-152 (1998).

    Google Scholar 

  7. H. M. Lachman, D. F. Papolos, T. Saito, Y. M. Yu, C. L. Szumlanski, and R. M. Weinshilboum. Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 6:243-250 (1996).

    Google Scholar 

  8. E. Y. Krynetski, H. L. Tai, C. R. Yates, M. Y. Fessing, T. Loennechen, J. D. Schuetz, M. V. Relling, and W. E. Evans. Genetic polymorphism of thiopurine S-methyltransferase: clinical importance and molecular mechanisms. Pharmacogenetics. 6:279-290 (1996).

    Google Scholar 

  9. E. Y. Krynetski and W. E. Evans. Pharmacogenetics of cancer therapy: getting personal. Am. J. Hum. Genet. 63:11-16 (1998).

    Google Scholar 

  10. E. Beutler, T. Gelbart, and A. Demina. Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter: A balanced polymorphism for regulation of bilirubin metabolism? Proc. Natl. Acad. Sci. USA 95:8170-8174 (1998).

    Google Scholar 

  11. C. N. Remy. Metabolism of thiopyrimidines and thiopurines: S-methylation with S-adenosylmethionine transmethylase and catabolism in mammalian tissues. J. Biol. Chem. 238:1078-1084 (1963).

    Google Scholar 

  12. R. M. Weinshilboum and S. L. Sladek. Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am. J. Hum. Genet. 32:651-662 (1980).

    Google Scholar 

  13. C. L. Szumlanski, R. Honchel, M. C. Scott, and R. M. Weinshilboum. Human liver thiopurine methyltransferase pharmacogenetics: biochemical properties, liver-erythrocyte correlation and presence of isozymes. Pharmacogenetics 2:148-159 (1992).

    Google Scholar 

  14. H. L. McLeod, J. S. Lin, E. P. Scott, C. H. Pui, and W. E. Evans. Thiopurine methyltransferase activity in American white subjects and black subjects. Clin. Pharmacol. Ther. 55:15-20 (1994).

    Google Scholar 

  15. C. R. Yates, E. Y. Krynetski, T. Loennechen, M. Y. Fessing, H. L. Tai, C. H. Pui, M. V. Relling, and W. E. Evans. Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance [see comments]. Ann. Intern. Med. 126:608-614 (1997).

    Google Scholar 

  16. R. Honchel, I. A. Aksoy, C. Szumlanski, T. C. Wood, D. M. Otterness, E. D. Wieben, and R. M. Weinshilboum. Human thiopurine methyltransferase: molecular cloning and expression of T84 colon carcinoma cell cDNA. Mol. Pharmacol. 43:878-887 (1993).

    Google Scholar 

  17. M. Fessing, V. M. Belkov, E. Y. Krynetski, and W. E. Evans. Molecular cloning and functional characterization of the cDNA encoding the murine thiopurine S-methyltransferase (TPMT). FEBS Letters 424:143-145 (1998).

    Google Scholar 

  18. B. Cournoyr, S. Watanabe, and A. Vivian. A tellurite-resistance genetic determinant from phytopathogenic pseudomonads encodes a thiopurine methyltransferase: evidence of a widely-conserved family of methyltransferases. Biochim. Biophys. Acta 1397:161-167 (1998).

    Google Scholar 

  19. J. W. Doran. Microorganisms and the biological cycling of Selenium. Adv. Microbiol. Ecol. 6:1-32 (1982).

    Google Scholar 

  20. W. E. Evans, M. Horner, Y. Q. Chu, D. Kalwinsky, and W. M. Roberts. Altered mercaptopurine metabolism, toxic effects, and dosage requirement in a thiopurine methyltransferase-deficient child with acute lymphocytic leukemia. J. Pediatr. 119:985-989 (1991).

    Google Scholar 

  21. L. Lennard, B. E. Gibson, T. Nicole, and J. S. Lilleyman. Congenital thiopurine methyltransferase deficiency and 6-mercaptopurine toxicity during treatment for acute lymphoblastic leukaemia. Arch. Dis. Child 69:577-579 (1993).

    Google Scholar 

  22. L. Lennard, J. A. Van Loon, and R. M. Weinshilboum. Pharmacogenetics of acute azathioprine toxicity: relationship to thiopurine methyltransferase genetic polymorphism. Clin. Pharmacol. Ther. 46:149-154 (1989).

    Google Scholar 

  23. E. Schutz, J. Gummert, F. Mohr, and M. Oellerich. Azathioprine-induced myelosuppression in thiopurine methyltransferase deficient heart transplant recipient [letter] [see comments]. Lancet 341:436 (1993).

    Google Scholar 

  24. L. Lennard and J. S. Lilleyman. Variable mercaptopurine metabolism and treatment outcome in childhood lymphoblastic leukemia [published erratum appears in J. Clin. Oncol. 1990 Mar;8(3):567]. J. Clin. Oncol. 7:1816-1823 (1989).

    Google Scholar 

  25. L. Lennard, J. S. Lilleyman, J. Van Loon, and R. M. Weinshilboum. Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet 336:225-229 (1990).

    Google Scholar 

  26. H. L. McLeod, D. R. Miller, and W. E. Evans. Azathioprine-induced myelosuppression in thiopurine methyltransferase deficient heart transplant recipient [letter; comment]. Lancet 341:1151 (1993).

    Google Scholar 

  27. M. V. Relling, Q. Lui, C. H. Pui, and W. E. Evans. Are patients with intermediate TPMT activity (e.g. heterozygous genotypes and phenotypes) at intermediate risk of thiopurine hematopoietic toxicity? Second Thiopurine Symp. (Abstract) (1996).

  28. A. Black, H. L. McLeod, H. A. Capell, R. H. Powrie, L. K. Matowe, S. C. Pritchard, E. S. R. Collie-Duguid, and D. M. Reid. Thiopurine methyltransferase genotype predicts therapy-limiting severe toxicity from azathioprine. Ann. Intern. Med. 129:716-718 (1998).

    Google Scholar 

  29. P. R. Chocair, J. A. Duley, H. A. Simmonds, and J. S. Cameron. The importance of thiopurine methyltransferase activity for the use of azathioprine in transplant recipients. Transplantation 53:1051-1056 (1992).

    Google Scholar 

  30. R. Pieters, D. R. Huismans, A. H. Loonen, G. J. Peters, K. Hahlen, A. Van Der Does-Van Den Berg, E. R. Van Wering, and A. J. Veerman. Hypoxanthine-guanine phosphoribosyl-transferase in childhood leukemia: relation with immunophenotype, in vitro drug resistance and clinical prognosis. Int. J. Cancer 51:213-217 (1992).

    Google Scholar 

  31. E. Y. Krynetski, N. F. Krynetskaia, Y. Yanishevski, and W. E. Evans. Methylation of mercaptopurine, thioguanine, and their nucleotide metabolites by heterologously expressed human thiopurine S-methyltransferase. Mol. Pharmacol. 47:1141-1147 (1995).

    Google Scholar 

  32. L. Lennard, D. Keen, and J. S. Lilleyman. Oral 6-mercaptopurine in childhood leukemia: parent drug pharmacokinetics and active metabolite concentrations. Clin. Pharmacol. Ther. 40:287-292 (1986).

    Google Scholar 

  33. G. Leipold, E. Schutz, and M. Oellerich. Azathioprine-induced severe pancytopenia due to a homozygous two-point mutation of the thiopurine methyltransferase gene in a patient with juvenile HLA-B27-associated spondylarthitis. Arthritis and Rheumatism 40:1896-1898 (1997).

    Google Scholar 

  34. E. Y. Krynetski, J. D. Schuetz, A. J. Galpin, C. H. Pui, M. V. Relling, and W. E. Evans. A single point mutation leading to loss of catalytic activity in human thiopurine S-methyltransferase. Proc. Natl. Acad. Sci. U.S.A. 92:949-953 (1995).

    Google Scholar 

  35. H. L. Tai, E. Y. Krynetski, C. R. Yates, T. Loennechen, M. Y. Fessing, N. F. Krynetskaia, and W. E. Evans. Thiopurine S-methyltransferase deficiency: two nucleotide transitions define the most prevalent mutant allele associated with loss of catalytic activity in Caucasians. Am. J. Hum. Genet. 58:694-702 (1996).

    Google Scholar 

  36. C. Szumlanski, D. Otterness, C. Her, D. Lee, B. Brandriff, D. Kelsell, N. Spurr, L. Lennard, E. Wieben, and R. Weinshilboum. Thiopurine methyltransferase pharmacogenetics: human gene cloning and characterization of a common polymorphism. DNA Cell Biol. 15:17-30 (1996).

    Google Scholar 

  37. D. Otterness, C. Szumlanski, L. Lennard, B. Klemetsdal, J. Aarbakke, J. O. Park-Hah, H. Iven, K. Schmiegelow, E. Branum, J. O'Brien, and R. Weinshilboum. Human thiopurine methyltransferase pharmacogenetics: gene sequence polymorphisms. Clin. Pharmacol. Ther. 62:60-73 (1997).

    Google Scholar 

  38. C. Spire-Vayrone de la Mourneyre, H. Debuysere, N. Sabbagh, D. Marez, E. Vinner, E. D. Chevalier, J. M. Lo Guidice, and F. Broly. Detection of known and new mutations in the thiopurine S-methyltransferase gene by single-strand conformation polymorphism analysis. Human Mutation 12:177-185 (1998).

    Google Scholar 

  39. H. L. Tai, E. Y. Krynetski, E. G. Schuetz, Y. Yanishevski, and W. E. Evans. Enhanced proteolysis of thiopurine S-methyltransferase (TPMT) encoded by mutant alleles in humans (TPMT*3A, TPMT*2): mechanisms for the genetic polymorphism of TPMT activity. Proc. Natl. Acad. Sci. U.S.A. 94:6444-6449 (1997).

    Google Scholar 

  40. H. L. McLeod, E. Y. Krynetski, J. A. Wilimas, and W. E. Evans. Higher activity of polymorphic thiopurine S-methyltransferase in erythrocytes from neonates compared to adults. Pharmacogenetics 5:281-286 (1995).

    Google Scholar 

  41. G. M. Pacifici, P. Romiti, L. Giuliani, and A. Raner. Thiopurine methyltransferase in humans: development and tissue distribution. Develop. Pharmacol. Ther. 17:16-23 (1991).

    Google Scholar 

  42. P. A. Pazmino, S. L. Sladek, and R. M. Weinshilboum. Thiol S-methylation in uremia: erythrocyte enzyme activities and plasma inhibitors. Clin. Pharmacol. Ther. 28:356-367 (1980).

    Google Scholar 

  43. D. Lee, C. Szumlanski, J. Houtman, R. Honchel, K. Rojas, J. Overhauser, E. D. Wieben, and R. M. Weinshilboum. Thiopurine methyltransferase pharmacogenetics. Cloning of human liver cDNA and a processed pseudogene on human chromosome 18q21.1. Drug Metab. Dispos. 23:398-405 (1995).

    Google Scholar 

  44. T. Loennechen, C. R. Yates, M. Fessing, M. V. Relling, E. Y. Krynetski, and W. E. Evans. Isolation of a human thiopurine S-methyltransferase (TPMT) complementary DNA with a single nucleotide transition A719G (TPMT*3C) and its association with loss of TPMT protein and catalytic activity in humans. Clin. Phar. Ther. 64:46-51 (1998).

    Google Scholar 

  45. H.-L. Tai, M. Y. Fessing, E. J. Bonten, Y. Yanishevsky, S. D'Azzo, E. Y. Krynetski, and W. E. Evans. Enhanced proteosomal degradation of mutant thiopurine S-methyltransferase (TPMT) in mammalian cells: mechanism for TPMT-deficiency inherited by the mutant human TPMT*2 and TPMT*3 alleles. Pharmacogen. (submitted) (1999).

  46. Y. Y. Hon, M. Y. Fessing, C.-H. Pui, M. V. Relling, E. Y. Krynetski, and W. E. Evans. Polymorsphism of the thiopurine S-methyltransferase (TPMT) gene in african-americans. Hum. Mol. Genet. (in press) (1999).

  47. E. S. R. Collie-Duguid, S. C. Prichard, R. H. Powrie, J. Sludden, D. A. Collier, T. Li, and H. L. McLeod. The frequency and distribution of thiopurine methyltransferase alleles in caucasian and asian populations. Pharmacogenetics (in press) (1998).

  48. R. M. Weinshilboum, F. A. Raymond, and P. A. Pazmino. Human erythrocyte thiopurine methyltransferase: radiochemical microassay and biochemical properties. Clin. Chim. Acta 85:323-333 (1978).

    Google Scholar 

  49. L. C. Woodson, J. H. Dunnette, and R. M. Weinshilboum. Pharmacogenetics of human thiopurine methyltransferase: kidney-erythrocyte correlation and immunotitration studies. J. Pharmacol. Exp. Ther. 222:174-181 (1982).

    Google Scholar 

  50. J. A Van Loon and R. M. Weinshilboum. Thiopurine methyltransferase biochemical genetics: human lymphocyte activity. Biochem. Genet. 20:637-658 (1982).

    Google Scholar 

  51. H. L. McLeod, M. V. Relling, Q. Liu, C.-H. Pui, and W. E. Evans. Polymorphic thiopurine methyltransferase in erythrocytes is indicative of activity in leukemic blasts from children with acute lymphoblastic leukemia. Blood 85:1897-1902 (1995).

    Google Scholar 

  52. A. A. M. Hollander, J. L. C. M. van Saase, A. M. M. Kootte, W. T. van Dorp, H. J. van Bockel, L. A. van Es, and F. J. van der Woude. Beneficial effects of conversion from cyclosporin to azathioprine after kidney transplantation. Lancet 345:610-614 (1995).

    Google Scholar 

  53. W. E. Evans, M. V. Relling, A. Rahman, H. L. McLeod, E. P. Scott, and J. S. Lin. Genetic basis for a lower prevalence of deficient CYP2D6 oxidative drug metabolism phenotypes in black Americans. J. Clin. Invest. 91:2150-2154 (1993).

    Google Scholar 

  54. F. J. Gonzalez, R. C. Skoda, S. Kimura, M. Umeno, U. M. Zanger, D. W. Nebert, H. V. Gelboin, J. P. Hardwick, and U. A. Meyer. Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature 331:442-446 (1988).

    Google Scholar 

  55. D. Marez, M. Legrand, N. Sabbagh, J. M. Lo Giudice, C. Spire, J. J. Lafitte, U. A. Meyer, and F. Broly. Polymorphism of the Cytochrome P450 CYP2D6 gene in the european population: characterization of 48 mutations and 53 alleles. Proceedings of the 12th Int. Symposium on Microsomes and Drug Oxidations 184(Abstract) (1998).

  56. W. E. Evans, M. V. Relling, L. H. Rodman, W. R. Crom, J. M. Boyett, and Ching-Hon Pui. Conventional compared with individualized chemotherapy for childhood acute lymphoblastic leukemia. N. Engl. J. Med. 338:499-505 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by the following NIH grants: R37 CA36401, R01 CA78224, and Cancer Center CORE grant CA21765, by a Center of Excellence grant from the State of Tennessee, and by American Lebanese Syrian Associated Charities.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krynetski, E.Y., Evans, W.E. Pharmacogenetics as a Molecular Basis for Individualized Drug Therapy: The Thiopurine S-methyltransferase Paradigm. Pharm Res 16, 342–349 (1999). https://doi.org/10.1023/A:1011909315614

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011909315614

Navigation