Skip to main content
Log in

Measurement of Cell Volume Changes by Fluorescence Self-Quenching

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

At high concentrations, certain fluorophores undergo self-quenching, i.e., fluorescence intensity decreases with increasing fluorophore concentration. Accordingly, the self-quenching properties can be used for measuring water volume changes in lipid vesicles. In cells, quantitative determination of water transport using fluorescence self-quenching has been complicated by the requirement of relatively high (mM) and often toxic loading concentrations. Here we report a simple method that uses low (μM) loading concentrations of calcein-acetoxymethyl ester (calcein-AM) to obtain intracellular concentrations of the fluorophore calcein suitable for measurement of changes in cell water volume by self-quenching. The relationship between calcein fluorescence intensity, when excited at 490 nm (its excitation maximum), and calcein concentration was investigated in vitro and in various cultured cell types. The relationship was bell-shaped, with the negative slope in the concentration range where the fluorophore undergoes fluorescence self-quenching. In cultured retinal pigment epithelial cells, calcein fluorescence and extracellular osmolarity were linearly related. A 25-mOsm hypertonic challenge corresponded to a decrease in calcein fluorescence with high signal-to-noise ratio (>15). Similar results were obtained with the fluorophore BCECF when excited at its isosbestic wavelength (436 nm). The present results demonstrate the usefulness of fluorescence self-quenching to measure rapid changes in cell water volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. B. Walter (1888) Ann. Phys. (Leipzig) 34, 316–326.

    Google Scholar 

  2. B. Walter (1888) Ann. Phys. (Leipzig) 34, 502–517.

    Google Scholar 

  3. B. Walter (1888) Ann. Phys. (Leipzig) 34, 518–533.

    Google Scholar 

  4. R. F. Chen and J. R. Knutson (1988) Anal. Biochem. 172, 61–77.

    Google Scholar 

  5. D. A. Kendall and R. C. MacDonald (1983) Anal. Biochem. 134, 26–33.

    Google Scholar 

  6. P. Y. Chen, D. Pearce, and A. S. Verkman (1988) Biochemistry 27, 5713–5718.

    Google Scholar 

  7. R. Ye, L.-B. Shi, W. I. Lencer, and A. S. Verkman (1989) J. Gen. Physiol. 93, 885–902.

    Google Scholar 

  8. Y. X. Wang, L. B. Shi, and A. S. Verkman (1991) Biochemistry 30, 2888–2894.

    Google Scholar 

  9. S. Jayaraman, Y. Song, and A. S. Verkman (2001) J. Gen. Physiol. 117, 423–430.

    Google Scholar 

  10. A. S. Verkman (2000) J. Membr. Biol. 173, 73–87.

    Google Scholar 

  11. F. J. Alvarez-Leefmans, J. Altamirano, and W. E. Crowe (1995) Meth. Neurosci. 27, 361–391.

    Google Scholar 

  12. W. E. Crowe, J. Altamirano, L. Huerto, and F. J. Alvarez-Leefmans (1995) Neuroscience 69, 283–296.

    Google Scholar 

  13. J. Farinas, M. Kneen, M. Moore, and A. S. Verkman (1997) J. Gen. Physiol. 110, 283–296.

    Google Scholar 

  14. F. Wehner, H. Sauer, and R. K. Kinne (1995) J. Gen. Physiol. 105, 507–535.

    Google Scholar 

  15. F. Wehner and H. Tinel (2000) Pflugers Arch. 441, 12–24.

    Google Scholar 

  16. F. Wehner and H. Tinel (1998) J. Physiol. 503 (Pt 1), 127–142.

    Google Scholar 

  17. R. Greger, D. Heitzmann, M. J. Hug, E. K. Hoffman, and M. Bleich (1999) Pflugers Arch. 438, 165–176.

    Google Scholar 

  18. X. M. Wang, P. I. Terasaki, G.W. Rankin, Jr., D. Chia, H. P. Zhong, and S. Hardy (1993) Hum. Immunol. 37, 264–270.

    Google Scholar 

  19. S. Muallem, B.-X. Zhang, P. A. Loessberg, and R. A. Star (1992) J. Biol. Chem. 267, 17658–17664.

    Google Scholar 

  20. S. P. Srinivas and J. A. Bonanno (1997) Am. J. Physiol. 272, C1405–C1414.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Hamann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamann, S., Kiilgaard, J.F., Litman, T. et al. Measurement of Cell Volume Changes by Fluorescence Self-Quenching. Journal of Fluorescence 12, 139–145 (2002). https://doi.org/10.1023/A:1016832027325

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016832027325

Navigation