Skip to main content
Log in

Enhanced Antinociception of the Model Opioid Peptide [D-Penicillamine2,5] Enkephalin by P-Glycoprotein Modulation

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. This study was conducted to examine the influence of P-glycoprotein (P-gp) modulation on the pharmacodynamics of the model opioid peptide DPDPE.

Methods. Mice (n = 5−7/group) were pretreated with a single oral dose of the P-gp inhibitor GF 120918 (25 or 250 mg/kg) or vehicle. 3H-DPDPE ( 1 0 mg/kg) or saline was administered 2.5 hr after pretreatment. Antinociception was determined, and blood and brain tissue were obtained, 10 min after DPDPE administration.

Results. A significant difference (p < 0.001) in DPDPE-associated antinociception was observed among mice pretreated with a 25- (83 ± 16% MPR) or 250- (95 ± 5% MPR) mg/kg dose of GF 120918 in comparison to mice pretreated with vehicle (24 ± 14% MPR) or mice receiving GF 120918 without DPDPE (12 ± 8% MPR). A significant difference (p < 0.0 1) in brain tissue DPDPE concentration also was observed among treatment groups [25 ± 6 ng/g (vehicle), 37 ± 11 ng/g (25 mg/kg GF 120918), 70 ± 8 ng/g (250 mg/kg GF 120918)]. In contrast, blood DPDPE concentrations were not statistically different between groups (678 ± 66, 677 ± 130, and 818 ± 236 ng/ml for vehicle, GF120918 [25 mg/kg], and GF120918 [250 mg/kg], respectively). A single 100-mg/kg i.p. dose of (+)verapamil increased the brain:blood DPDPE concentration ratio by ∼70% relative to saline-treated control mice (0.139 ± 0.021 vs. 0.0814 ± 0.0130, p < 0.01), a change in partitioning similar to that observed with the low dose of GF 120918. These data provide further support for a P-gp-based mechanism of brain:blood DPDPE distribution.

Conclusions. The present study demonstrates that GF 120918 modulates blood-brain disposition and antinociception of DPDPE. Coadministration of a P-gp inhibitor with DPDPE may improve the pharmacologic activity of this opioid peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. H. I. Mosberg, R. Hurst, V. J. Hruby, K. Gee, H. I. Yamamura, J. J. Galligan, and T. F. Burks. Bis-penicillamine possesses highly improved specificity toward delta opioid receptors. Natl. Acad. Sci. U.S.A. 80:5871–5874 (1983).

    Google Scholar 

  2. S. A. Williams, T. J. Abbruscato, V. J. Hruby, and T. P. Davis. Passage of a δ-opioid selective enkephalin, [D-penicillamine2,5]enkephalin, across the blood-brain and the blood-cerebrospinal fluid barriers. J. Neurochem. 66:1289–1299 (1996).

    Google Scholar 

  3. S. J. Weber, D. L. Greene, S. D. Sharma, H. I. Yamamura, T. H. Kramer, T. F. Burks, V. J. Hruby, L. B. Hersh, and T. P. Davis. Distribution and antinociception of [3H]cyclic [D-Pen2, D-Pen5]-enkephalin and two halogenated analogs after intravenous administration J. Pharmacol. Exp. Ther. 259:1109–1117 (1991).

    Google Scholar 

  4. S. J. Weber, D. L. Greene, V. J. Hruby, H. I. Yamamura, F. Porreca, and T. P. Davis. Whole body and brain distribution of [3H]cyclic[D-Pen2, D-Pen5]enkephalin after intraperitoneal, intravenous, oral and subcutaneous administration. J. Pharmacol. Exp. Ther. 263:1308–1316 (1992).

    Google Scholar 

  5. S. J. Weber, T. J. Abbruscato, E. A. Brownson, A. W. Lipkowski, R. Polt, A. Misicka, R. C. Haaseth, H. Bartosz, V. J. Hruby, and T. P. Davis. Assessment of an in vitro blood-brain barrier model using several [Met5]enkephalin opioid analogs. J. Pharmacol. Exp. Ther. 266:1649–1655 (1993).

    Google Scholar 

  6. C. Chen and G. M. Pollack. Development of a capillary zone electrophoresis assay to examine the disposition of [D-pen2,5]enkephalin in rats. J. Chromatogr. Biomed. Appl. 681:363–373 (1996).

    Google Scholar 

  7. C. Chen and G. M. Pollack. Extensive biliary excretion of the model opioid peptide [D-Pen2,5]enkephalin in rats. Pharm. Res. 14:345–350 (1997).

    Google Scholar 

  8. M. V. Shah, K. L. Audus, and R. T. Borchardt. The application of bovine brain microvessel endothelial-cell monolayers grown onto polycarbonate membranes in vitro to estimate the potential permeability of solutes through blood-brain barrier Pharm. Res. 6:624–627 (1989).

    Google Scholar 

  9. C. Chen and G. M. Pollack. Blood-brain disposition and antinociceptive effects of [D-pen2,5]enkephalin in the mouse. J. Pharmacol. Exp. Ther. 283:1151–1159 (1997).

    Google Scholar 

  10. C. F. Higgins. ABC transporters: from microorganisms to man. Ann. Rev. Cell. Biol. 67–113 (1992).

  11. M. M. Gottesman and I. Pastan. The multidrug transporter, a double-edged sword. J. Biol. Chem. 263:12163–12166 (1989).

    Google Scholar 

  12. B. L. Lum, M. P. Gosland, S. Kaubisch, and B. I. Sikic. Molecular targets in oncology: implications of the multidrug resistance gene. Pharmacother. 13:88–109 (1993).

    Google Scholar 

  13. B. L. Lum and M. P. Gosland. MDR expression in normal tissues: pharmacologic implications for the clinical use of P-glycoprotein inhibitors. Hematol.-Oncol. Clinics North America 9:319–336 (1995).

    Google Scholar 

  14. R. C. Sharma, S. Inoue, J. Roitelman, R. T. Schimke, and R. D. Simoni. Peptide transport by the multidrug resistance pump. J. Biol. Chem. 267:5731–5734 (1992).

    Google Scholar 

  15. T. Saeki, K. Ueda, Y. Tanigawana, R. Hori, and T. Komano. Human P-glycoprotein transports cyclosporin A and FK506. J. Biol. Chem. 268:6077–6080 (1993).

    Google Scholar 

  16. A. H. Schinkel, E. Wagenaar, C. A. A. M. Mol, and L. Van Deemter. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J. Clin. Invest. 97:2517–2524 (1996).

    Google Scholar 

  17. R. Callaghan and J. R. Riordan. Synthetic and natural opiates interact with P-glycoprotein in multidrug-resistant cells. J. Biol. Chem. 268:16059–16064 (1993).

    Google Scholar 

  18. C. Chen and G. M. Pollack. Altered disposition and antinociception of [D-penicillamine2,5]enkephalin in the mdrla gene-deficient mice. J. Pharmacol. Exp. Ther. 287:545–552 (1998).

    Google Scholar 

  19. S. P. Letrent, G. M. Pollack, K. R. Brouwer, and K. L. R. Brouwer. Effect of GF120918, a potent P-glycoprotein inhibitor, on morphine pharmacokinetics and pharmacodynamics in the rat. Pharm. Res. 15:599–605 (1998).

    Google Scholar 

  20. J. M. Ford and W. N. Hait. Pharmacology of drug that alter multidrug resistance in cancer. Pharmacol. Rev. 42:155–199 (1990).

    Google Scholar 

  21. M. V. Relling. Are the major effects of P-glycoprotein modulators due to altered pharmacokinetics of anticancer drugs? Ther. Drug Monitor. 18:350–356 (1996).

    Google Scholar 

  22. I. Pastan and M. M. Gottesman. Multidrug resistance. Ann. Rev. Med. 42:277–286 (1991).

    Google Scholar 

  23. B. Dumaitre and N. Dodic. Patent Application WO 92/12132 (1992).

    Google Scholar 

  24. F. Hyafil, C. Vergely, P. D. Vignaud, and T. Grand-Perret. In vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Res. 53:4595–4602 (1994).

    Google Scholar 

  25. G. D. Pennock, W. S. Dalton, W. R. Roeske, C. P. Appleton, K. Mosley, P. Plezia, T. P. Miller, and S. E. Salmon. Systemic toxic effects associated with high-dose of verapamil infusion and chemotherapy administration. J. Natl. Cancer Inst. 83:105–110 (1991).

    Google Scholar 

  26. H. H. Loh, L. F. Tseng, E. Wei, and C. H. Li. Beta-endorphin is a potent analgesic agent. Proc. Natl. Acad. Sci. U.S.A. 73:2895–2898 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary M. Pollack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Pollack, G.M. Enhanced Antinociception of the Model Opioid Peptide [D-Penicillamine2,5] Enkephalin by P-Glycoprotein Modulation. Pharm Res 16, 296–301 (1999). https://doi.org/10.1023/A:1018892811980

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018892811980

Navigation