Skip to main content
Log in

Dependence of H2O2 Formation by Rat Heart Mitochondria on Substrate Availability and Donor Age

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

We have examined the substrate specificity and inhibitor sensitivity of H2O2 formation by rat heart mitochondria. Active H2O2 production requires both a high fractional reduction of Complex I (indexed by NADH/NAD+ + NADH ratio) and a high membrane potential, ΔΨ. These conditions are achieved with supraphysiological concentrations of succinate. With physiological concentrations of NAD-linked substrates, rates of H2O2 formation are much lower (less than 0.1% of respiratory chain electron flux) but may be stimulated by the Complex III inhibitor antimycin A, but not by myxothiazol. Addition of Mn2+ to give 10 nmol/mg of mitochondrial protein enhances H2O2 production with all substrate combinations, possibly by repleting mitochondrial superoxide dismutase with this cation. Contrary to previously published work, no increased activity of H2O2 production was found with heart mitochondria from senescent (24 month) rats, relative to young adults (6 month).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Agarwal, S., and Sohal, R. J. (1994). Proc. Natl. Acad. Sci. USA 91, 12332–12335.

    Google Scholar 

  • Ames, B. N., Shigenaga, M. K, and Hagen, T. M. (1993). Proc. Natl. Acad. Sci. USA 90, 7915–7922.

    Google Scholar 

  • Barja, G., Cadenas, S., Rojas, C., Pérez-Campo, R., and López-Torres, M. (1994). Free Rad. Res. 21, 317–328.

    Google Scholar 

  • Boveris, A. (1984). Methods Enzymol. 105, 429–435.

    Google Scholar 

  • Boveris, A., and Chance, B. (1973). Biochem. J. 134, 707–716.

    Google Scholar 

  • Boveris, A., Oshino, N., and Chance, B. (1972). Biochem. J. 128, 617–630.

    Google Scholar 

  • Boveris, A., Cadenas, E., and Stoppani, A. O. M. (1976). Biochem. J. 156, 435–444.

    Google Scholar 

  • Brown, M. D., and Wallace, D. C. (1994). J. Bioenerg. Biomembr. 26, 273–290.

    Google Scholar 

  • Chance, B., Sies, H., and Boveris, A. (1979). Physiol. Rev. 59, 527–603.

    Google Scholar 

  • Cutler, R. G. (1984). In Free Radicals in Molecular Biology, Aging, and Disease (Armstrong, D., et al., eds.) Raven Press, pp. 235–266.

  • Giulivi, C., Boveris, A., and Cadenas, E. (1995). Arch. Biochem. Biophys. 316, 909–916.

    Google Scholar 

  • Gunter, T. E., and Pfeiffer, D. R. (1990). Am. J. Physiol. 258, C755–C786.

    Google Scholar 

  • Hansford, R. G. (1978). Biochem. J. 170, 285–295.

    Google Scholar 

  • Hyslop, P. A., and Sklar, L. A. (1984). Anal. Biochem. 141, 280–286.

    Google Scholar 

  • Kamo, N., Muragatsu, M., Hongoh, R., and Kotabake, Y. J. (1979). J. Membr. Biol. 49, 105–121.

    Google Scholar 

  • Lewandowski, E. D., Doumen, C., White, L. T., LaNoue, K. F., Damico, L. A., and Yu, X. (1996). Magn. Reson. Med. 35, 149–154.

    Google Scholar 

  • Linnane, A. W., Marzuki, S., Ozawa, T., and Tanaka, M. (1989). Lancet 25, 642–645.

    Google Scholar 

  • McCord, J. M., and Fridovich, I. (1969). J. Biol. Chem. 244, 6049–6055.

    Google Scholar 

  • Mecocci, P., MacGarvey, U., Kaufman, A. E., Koontz, D., Shoffner, J. M., Wallace, D. C., and Beal, M. F. (1993). Ann. Neurol. 34, 609–616.

    Google Scholar 

  • Miquel, J., Economos, A. C., Fleming, J., and Johnson, J. E., Jr. (1980). Exp. Gerontol. 15, 575–591.

    Google Scholar 

  • Nohl, H., and Hegner, D. (1978). Eur. J. Biochem. 82, 563–567.

    Google Scholar 

  • Shigenaga, M. K., Hagen, T. M., and Ames, B. N. (1994). Proc. Natl. Acad. Sci. USA 91, 10771–10778.

    Google Scholar 

  • Sohal, R. S. (1991). Mech. Age. Dev. 60, 189–198.

    Google Scholar 

  • Sohal, R. S., Ku, H.-H., Agarwal, S., Forster, M. J., and Lal, H. (1994). Mech. Age. Dev. 74, 121–131.

    Google Scholar 

  • Turrens, J. F., and Boveris, A. (1980). Biochem. J. 191, 421–427.

    Google Scholar 

  • Turrens, J. F., Alexandra, A., and Lehninger, A. L. (1985). Arch. Biochem. Biophys. 237, 408–414.

    Google Scholar 

  • von Jagow, G., Ljungdahl, P. O., Graf, P. Ohnishi, T., and Trumpower, B. L. (1984). J. Biol. Chem. 259, 6318–6326.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansford, R.G., Hogue, B.A. & Mildaziene, V. Dependence of H2O2 Formation by Rat Heart Mitochondria on Substrate Availability and Donor Age. J Bioenerg Biomembr 29, 89–95 (1997). https://doi.org/10.1023/A:1022420007908

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022420007908

Navigation