Skip to main content
Log in

Cloning and localization of the cGMP-specific phosphodiesterase type 9 in the rat brain

  • Published:
Journal of Neurocytology

Abstract

In this study, we report the cloning of the rat cGMP-specific phosphodiesterase type 9 (PDE9A) and its localization in rat and mouse brain by non-radioactive in situ hybridization. Rat PDE9A was 97.6% identical to mouse PDE9A1 and showed 92.1% similarity on the amino acid level to the human homologue. PDE9A mRNA was widely distributed throughout the rat and mouse brain, with the highest expression observed in cerebellar Purkinje cells. Furthermore, strong staining was detected in areas such as cortical layer V, olfactory tubercle, caudate putamen and hippocampal pyramidal and granule cells. Comparison of PDE9A mRNA expression by double staining with the cellular markers NeuN and glial fibrillary acidic protein demonstrated that PDE9A expression was mainly detected in neurons and in a subpopulation of astrocytes.

Using cGMP-immunocytochemistry, the localization of cGMP was investigated in the cerebellum in which the highest PDE9 expression was demonstrated. Strong cGMP immunoreactivity was detected in the molecular layer in the presence of the non-selective PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX). After treatment with soluble guanylyl cyclase activators the granular layer also showed cGMP staining, whereas no clear immunostaining was detected in Purkinje cells under all conditions investigated, which might be due to the presence of the IBMX-insensitive PDE9A in these cells.

The present findings indicate that PDE9A is highly conserved between species and is widely distributed throughout the rodent brain. PDE9A is probably involved in maintenance of low cGMP levels in cells and might play an important role in a variety of brain functions involving cGMP-mediated signal transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andreeva, S. G., Dikkes, P., Epstein, P. M. & Rosenberg, P. A. (2001) Expression of cGMP-specific phosphodiesterase 9A mRNA in the rat brain. Journal of Neuroscience 21, 9068–9076.

    PubMed  Google Scholar 

  • Beavo, J. A. (1995) Cyclic nucleotide phosphodiesterases: Functional implications of multiple isoforms. Physiological Reviews 75, 725–748.

    PubMed  Google Scholar 

  • Beavo, J. A. & Reifsnyder, D. H. (1990) Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the design of selective inhibitors. Trends in Pharmacological Sciences 11, 150–155.

    PubMed  Google Scholar 

  • Biel, M., Zong, X., Ludwig, A., Sautter, A. & Hofmann, F. (1999) Structure and function of cyclic nucleotide-gated channels. Reviews of Physiology, Biochemistry and Pharmacology 135, 151–171.

    Google Scholar 

  • Chan-Palay, V. & Palay, S. L. (1979) Immunocytochemical localization of cyclic GMP: Light and electron microscope evidence for involvement of neuroglia. Proceedings of the National Academy of Sciences of the USA 76, 1485–1488.

    PubMed  Google Scholar 

  • Corbin, J. D., Turko, I. V., Beasley, A. & Francis, S. H. (2000) Phosphorylation of phosphodiesterase-5 by cyclic nucleotide-dependent protein kinase alters its catalytic and allosteric cGMP-binding activities. European Journal of Biochemistry 267, 2760–2767.

    PubMed  Google Scholar 

  • de Vente, J., Bol, J. G., Berkelmans, H. S., Schipper, J. & Steinbusch, H. W. M. (1990) Immunocytochemistry of cGMP in the cerebellum of the immature, adult, and aged rat: The involvement of nitric oxide. A micropharmacological study. European Journal of Neuroscience 2, 845–862.

    PubMed  Google Scholar 

  • de Vente, J., Bol, J. G. J. M. & Steinbusch, H. W. M. (1989) Cyclic GMP-producing atrial natriuretic factor-responding cells in the rat brain: An immunocytochemical study. European Journal of Neuroscience 1, 436–460.

    PubMed  Google Scholar 

  • de Vente, J., Hopkins, D. A., Markerink-van Ittersum, M., Emson, P. C., Schmidt, H. H. H. & Steinbusch, H. W. M. (1998) Distribution of nitric oxide synthase and nitric oxide-receptive, cyclic GMPproducing structures in the rat brain. Neuroscience 87, 207–241.

    PubMed  Google Scholar 

  • de Vente, J. & Steinbusch, H. W. M. (1992) On the stimulation of soluble and particulate guanylate cyclase in the rat brain and the involvement of nitric oxide as studied by cGMP immunocytochemistry. Acta Histochemica 92, 13–38.

    PubMed  Google Scholar 

  • de Vente, J. & Steinbusch, H. W. M. (2000) Nitric oxide-cGMP signaling in the brain. In Handbook of Chemical Neuroanatomy (edited by Steinbusch, H. W. M., de Vente, J. & Vincent, S. R.) pp. 355–415. Elsevier.

  • Dousa, T. P. (1999) Cyclic-3′,5′-nucleotide phosphodiesterase isozymes in cell biology and pathophysiology of the kidney. Kidney International 55, 29–62.

    PubMed  Google Scholar 

  • Engels, P., Fichtel, K. & Lubbert, H. (1994) Expression and regulation of human and rat phosphodiesterase type IV isogenes. FEBS Letters 350, 291–295.

    PubMed  Google Scholar 

  • Fisher, D. A., Smith, J. F., Pillar, J. S., St Denis, S. H. & Cheng, J. B. (1998) Isolation and characterization of PDE9A, a novel human cGMP-specific phosphodiesterase. Journal of Biological Chemistry 273, 15559–15564.

    PubMed  Google Scholar 

  • Florio, V. A., Sonnenburg, W. K., Johnson, R., Kwak, K. S., Jensen, G. S., Walsh, K. A. & Beavo, J. A. (1994) Phosphorylation of the 61-kDa calmodulin-stimulated cyclic nucleotide phosphodiesterase at serine 120 reduces its affinity for calmodulin. Biochemistry 33, 8948–8954.

    PubMed  Google Scholar 

  • Francis, S. H., Turko, I. V. & Corbin, J. D. (2001) Cyclic nucleotide phosphodiesterases: Relating structure and function. Progress in Nucleic Acid Research and Molecular Biology 65, 1–52.

    PubMed  Google Scholar 

  • Fujishige, K., Kotera, J. & Omori, K. (1999) Striatumand testis-specific phosphodiesterase PDE10A isolation and characterization of a rat PDE10A. European Journal of Biochemistry 266, 1118–1127.

    PubMed  Google Scholar 

  • Furuyama, T., Iwahashi, Y., Tano, Y., Takagi, H. & Inagaki, S. (1994) Localization of 63-kDa calmodulin-stimulated phosphodiesterase mRNA in the rat brain by in situ hybridization histochemistry. Brain Research. Molecular Brain Research 26, 331–336.

    PubMed  Google Scholar 

  • Garthwaite, J. (1991) Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends in Neurosciences 14, 60–67.

    PubMed  Google Scholar 

  • Guipponi, M., Scott, H. S., Kudoh, J., Kawasaki, K., Shibuya, K., Shintani, A., Asakawa, S., Chen, H., Lalioti, M. D., Rossier, C., Minoshima, S., Shimizu, N. & Antonarakis, S. E. (1998) Identification and characterization of a novel cyclic nucleotide phosphodiesterase gene (PDE9A) that maps to 21q22.3: Alternative splicing of mRNA transcripts, genomic structure and sequence. Human Genetics 103, 386–392.

    PubMed  Google Scholar 

  • Herman, J. P., Dolgas, C. M., Rucker, D. & Langub, M. C. (1996) Localization of natriuretic peptide-activated guanylate cyclase mRNAs in the rat brain. Journal of Comparative Neurology 369, 165–187.

    PubMed  Google Scholar 

  • Houslay, M. D. (2001) PDE4 cAMP-specific phosphodiesterases. Progress in Nucleic Acid Research and Molecular Biology 69, 249–315.

    PubMed  Google Scholar 

  • Iwahashi, Y., Furuyama, T., Tano, Y., Ishimoto, I., Shimomura, Y. & Inagaki, S. (1996) Differential distribution ofmRNAencoding cAMP-specific phosphodiesterase isoforms in the rat brain. Brain Research. Molecular Brain Research 38, 14–24.

    PubMed  Google Scholar 

  • Juilfs, D. M., Soderling, S., Burns, F. & Beavo, J. A. (1999) Cyclic GMP as substrate and regulator of cyclic nucleotide phosphodiesterases (PDEs). Reviews of Physiology, Biochemistry and Pharmacology 135, 67–104.

    Google Scholar 

  • Kincaid, R. L., Balaban, C. D. & Billingsley, M. L. (1987) Differential localization of calmodulindependent enzymes in rat brain: Evidence for selective expression of cyclic nucleotide phosphodiesterase in specific neurons. Proceedings of the National Academy of Sciences of the USA 84, 1118–1122.

    PubMed  Google Scholar 

  • Koesling, D. (1998) Modulators of soluble guanylyl cyclase. Naunyn-Schmiedeberg's Archives of Pharmacology 358, 123–126.

    PubMed  Google Scholar 

  • Koesling, D. (1999) Studying the structure and regulation of soluble guanylyl cyclase. Methods 19, 485–493.

    PubMed  Google Scholar 

  • Kotera, J., Fujishige, K., Yuasa, K. & Omori, K. (1999) Characterization and phosphorylation of PDE10A2, a novel alternative splice variant of human phosphodiesterase that hydrolyzes cAMP and cGMP. Biochemical and Biophysical Research Communications 261, 551–557.

    PubMed  Google Scholar 

  • Kotera, J., Yanaka, N., Fujishige, K., Imai, Y., Akatsuka, H., Ishizuka, T., Kawashima, K. & Omori, K. (1997) Expression of rat cGMP-binding cGMP-specific phosphodiesterasemRNAin Purkinje cell layers during postnatal neuronal development. European Journal of Biochemistry 249, 434–442.

    PubMed  Google Scholar 

  • Lohmann, S. M., Vaandrager, A. B., Smolenski, A., Walter, U. & de Jonge, H. R. (1997) Distinct and specific functions of cGMP-dependent protein kinases. Trends in Biochemical Sciences 22, 307–312.

    PubMed  Google Scholar 

  • Macphee, C. H., Reifsnyder, D. H., Moore, T. A., Lerea, K. M. & Beavo, J. A. (1988) Phosphorylation results in activation of a cAMP phosphodiesterase in human platelets. Journal of Biological Chemistry 263, 10353–10358.

    PubMed  Google Scholar 

  • Mcphee, I., Cochran, S. & Houslay, M. D. (2001) The novel long PDE4A10 cyclic AMP phosphodiesterase shows a pattern of expression within brain that is distinct from the long PDE4A5 and short PDE4A1isoforms. Cellular Signalling 13, 911–918.

    PubMed  Google Scholar 

  • Mehats, C., Andersen, C. B., Filopanti, M., Jin, S. L. & Conti, M. (2002) Cyclic nucleotide phosphodiesterases and their role in endocrine cell signaling. Trends in Endocrinology and Metabolism 13, 29–35.

    PubMed  Google Scholar 

  • Michibata, H., Yanaka, N., Kanoh, Y., Okumura, K. & Omori, K. (2001) Human Ca2+/calmodulin-dependent phosphodiesterase PDE1A: Novel splice variants, their specific expression, genomic organization, and chromosomal localization. Biochimica et Biophysica Acta 1517, 278–287.

    PubMed  Google Scholar 

  • Miro, X., Perez-Torres, S., Palacios, J. M., Puigdomenech, P. & Mengod, G. (2001) Differential distribution of cAMP-specific phosphodiesterase 7A mRNA in rat brain and peripheral organs. Synapse 40, 201–214.

    PubMed  Google Scholar 

  • Murad, F. (1994) Regulation of cytosolic guanylyl cyclase by nitric oxide: The NO-cyclic GMP signal transduction system. Advances in Pharmacology 26, 19–33.

    PubMed  Google Scholar 

  • PÉrez-Torres, S., Miro, X., Palacios, J. M., Cortes, R., Puigdomenech, P. & Mengod, G. (2000) Phosphodiesterase type 4 isozymes expression in human brain examined by in situ hybridization histochemistry and [3H]rolipram binding autoradiography. Comparison with monkey and rat brain. Journal of Chemical Neuroanatomy 20, 349–374.

    PubMed  Google Scholar 

  • Pfeifer, A., Ruth, P., Dostmann, W., Sausbier, M., Klatt, P. & Hofmann, F. (1999) Structure and function of cGMP-dependent protein kinases. Reviews of Physiology, Biochemistry and Pharmacology 135, 105–149.

    Google Scholar 

  • Reinhardt, R. R. & Bondy, C. A. (1996) Differential cellular pattern of gene expression for two distinct cGMP-inhibited cyclic nucleotide phosphodiesterases in developing and mature rat brain. Neuroscience 72, 567–578.

    PubMed  Google Scholar 

  • Repaske, D. R., Corbin, J. G., Conti, M. & Goy, M. F. (1993) A cyclic GMP-stimulated cyclic nucleotide phosphodiesterase gene is highly expressed in the limbic system of the rat brain. Neuroscience 56, 673–686.

    PubMed  Google Scholar 

  • Schmidt, H. H., Gagne, G. D., Nakane, M., Pollock, J. S., Miller, M. F. & Murad, F. (1992) Mapping of neural nitric oxide synthase in the rat suggests frequent co-localization with NADPH diaphorase but not with soluble guanylyl cyclase, and novel paraneural functions for nitrinergic signal transduction. The Journal of Histochemistry and Cytochemistry 40, 1439–1456.

    PubMed  Google Scholar 

  • Sekhar, K. R. & Freeman, M. L. (1998) PEST sequences in proteins involved in cyclic nucleotide signalling pathways. Journal of Receptor and Signal Transduction Research 18, 113–132.

    PubMed  Google Scholar 

  • Soderling, S. H., Bayuga, S. J. & Beavo, J. A. (1998) Identification and characterization of a novel family of cyclic nucleotide phosphodiesterases. The Journal of Biological Chemistry 273, 15553–15558.

    PubMed  Google Scholar 

  • Soderling, S. H. & Beavo, J. A. (2000) Regulation of cAMP and cGMP signaling: New phosphodiesterases and new functions. Current Opinion in Cell Biology 12, 174–179.

    PubMed  Google Scholar 

  • Southam, E. & Garthwaite, J. (1993) Thenitric oxidecyclic GMP signalling pathway in rat brain. Neuropharmacology 32, 1267–1277.

    PubMed  Google Scholar 

  • Teunissen, C., Steinbusch, H. W. M., Markerinkvan Ittersum, M., Koesling, D. & de Vente, J. (2001) Presence of soluble and particulate guanylyl cyclase in the same hippocampal astrocytes. Brain Research 891, 206–212.

    PubMed  Google Scholar 

  • van Staveren, W. C. G., Markerink-van Ittersum, M., Steinbusch, H. W. M. & de Vente, J. (2001) The effects of phosphodiesterase inhibition on cyclic GMP and cyclic AMP accumulation in the hippocampus of the rat. Brain Research 888, 275–286.

    PubMed  Google Scholar 

  • Wang, P., Wu, P., Egan, R. W. & Motasim billah, M. (2001) Human phosphodiesterase 8A splice variants: Cloning, gene organization, and tissue distribution. Gene 280, 183–194.

    PubMed  Google Scholar 

  • Yuasa, K., Ohgaru, T., Asahina, M. & Omori, K. (2001) Identification of rat cyclic nucleotide phosphodiesterase 11A (PDE11A): Comparison of rat and human PDE11A splicing variants. European Journal of Biochemistry 268, 4440–4448.

    PubMed  Google Scholar 

  • Zwiller, J., Ghandour, M. S., Revel, M. O. & Basset, P. (1981) Immunohistochemical localization of guanylate cyclase in rat cerebellum. Neuroscience Letters 23, 31–36.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Staveren, W.C.G., Glick, J., Markerink-van Ittersum, M. et al. Cloning and localization of the cGMP-specific phosphodiesterase type 9 in the rat brain. J Neurocytol 31, 729–741 (2002). https://doi.org/10.1023/A:1025704031210

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025704031210

Keywords

Navigation