Skip to main content
Log in

Enzymatic synthesis of nucleotide sugars

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The present review gives a survey on the biosynthetic pathways of nucleotide sugars which are important for the in vitro synthesis of mammalian glycoconjugates. With respect to the use of these enzymes in glycotechnology the availability as recombinant enzymes from different sources, the large-scale synthesis of nucleotide sugars and their in situ regeneration in combination with glycosyltransferases are summarized and evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fukuda M (1994) In Complex Carbohydrates in Drug Research, Alfred Benzon Symposium (Bock K, Clausen H, eds) pp 353–65. Copenhagen: Munksgaard.

    Google Scholar 

  2. Liu H-W, Thorson JS (1994) Annu Rev Microbiol 48: 223–56.

    Google Scholar 

  3. Khan SH, Hindsgaul O (1994) In Molecular Glycobiology, (Fukuda M, Hindsgaul O, eds) pp 206–29. Oxford: IRL Press

    Google Scholar 

  4. Dinter A, Berger EG (1995) In Glycoimmunology (Alavi A, Axford JS, eds) pp 53–82. New York: Plenum Press.

    Google Scholar 

  5. Almeida R, Amado M, David L, Levery SB, Holmes EH, Merkx G, van Kessel AG, Rygaard E, Hassan H, Bennett E, Clausen H (1997) J Biol Chem 272: 31979–91. 31991.

    Google Scholar 

  6. Amado M, Almeida R, Carneiro F, Levery SB, Holmes EH, Nomoto M, Hollingsworth MA, Hassan H, Schwientek T, Nielsen PA, Bennett EP, Clausen H (1998) J Biol Chem 273: 12770–78.

    Google Scholar 

  7. Sato T, Aoki N, Matsuda T, Furukawa K (1998) Biochem Biophys Res Commun 244: 637–41.

    Google Scholar 

  8. Hennet T, Dinter A, Kuhnert P, Mattu TS, Rudd PM, Berger EG (1998) J Biol Chem 273: 58–65.

    Google Scholar 

  9. Sears P, Wong C-H (1998) Cell Mol Life Sci 54: 223–52.

    Google Scholar 

  10. Kornfeld R, Kornfeld S (1985) Annu Rev Biochem 54: 631–64.

    Google Scholar 

  11. Leloir LF (1971) Science 172: 1299–303.

    Google Scholar 

  12. Roseman S (1962) Proc Nat Acad Sci USA 48: 437–41.

    Google Scholar 

  13. Munch-Petersen A (1956) Acta Chem Scand 10: 928–34.

    Google Scholar 

  14. Munch-Petersen A, Kalckar HM, Cutolo E, Smith EEB (1953) Nature 172: 1036–37.

    Google Scholar 

  15. Cabib E, Leloir LF, Cardini CE (1953) J Biol Chem 203: 1055–70.

    Google Scholar 

  16. Field MC, Wainwright LJ (1995) Glycobiology 5: 463–72.

    Google Scholar 

  17. Malissard M, Zeng S, Berger EG (1999) Glycoconj J, review.

  18. Klaffke W (1994) Carbohydrates in Europe 10: 9–17.

    Google Scholar 

  19. Ichikawa Y, Wang R, Wong C-H (1994) Methods Enzymol 247: 107–27.

  20. Wong C-H, Whitesides GM(1994) Enzymes in SyntheticOrganic Chemistry. Oxford: Elsevier Science.

    Google Scholar 

  21. Toone EJ, Whitesides GM (1991) In Enzymes in Carbohydrate Synthesis (Bednarski MD, Simon ES, eds) pp 1–22. Washington: American Chemical Society.

    Google Scholar 

  22. Elling L (1997) In Advances in Biochemical Engineering/ Biotechnology (Scheper T, ed) pp 89–144. Berlin: Springer-Verlag.

    Google Scholar 

  23. Stein A, Kula M-R, Elling L (1998) Glycoconj J 15: 139–45.

    Google Scholar 

  24. Kawai H, Nakazima S, Okuda M, Yano T, Tachiki T, Tochikura T (1978) J Ferment Technol 56: 586–92.

    Google Scholar 

  25. Ko JH, Shin H-S, Kim YS, Lee D-S, Kim C-H (1996) Appl Biochem Biotechnol 60: 41–8.

    Google Scholar 

  26. Wong C-H, Haynie SL, Whitesides GM (1983) J Am Chem Soc 105: 115–17.

    Google Scholar 

  27. Heidlas JE, Lees WJ, Whitesides GM (1992) J Org Chem 57: 152–57.

    Google Scholar 

  28. Wong C-H, Haynie SL, Whitesides GM (1982) J Org Chem 47: 5416–18.

    Google Scholar 

  29. Wong C-H, Wang R, Ichikawa Y (1992) J Org Chem 57: 4343–44.

    Google Scholar 

  30. Zervosen A, Elling L (1996) J Am Chem Soc 118: 1836–40.

    Google Scholar 

  31. Gygax D, Spies P, Winkler T, Pfaar U (1991) Tetrahedron 47: 5119–22.

    Google Scholar 

  32. De Luca C, Lansing M, Martini I, Crescenzi F, Shen G-J, O'Regan M, Wong C-H (1995) J Am Chem Soc 117: 5869–70.

    Google Scholar 

  33. De Luca C, Lansing M, Crescenzi F, Martini I, Shen G-J, O'Regan M, Wong C-H (1996) Bioorg Med Chem 4: 131–42.

    Google Scholar 

  34. Anderson EP, Maxwell ES, Main Burton R (1959) J Am Chem Soc 81: 6514–17.

    Google Scholar 

  35. Shedlovsky AE, Boye HA, Brenner S (1964) Anal Biochem 8: 362–66.

    Google Scholar 

  36. Kragl U, Gödde A, Wandrey C, Kinzy W, Cappon JJ, Lugtenburg J (1993) Tetrahedron Asymm 4: 1193–202.

    Google Scholar 

  37. Koizumi S, Endo T, Tabata K, Ozaki A(1998) Nature Biotechnology 16: 847–50.

    Google Scholar 

  38. Hokke CH, Zervosen A, Elling L, Joziasse DH, van den Eijnden DH (1996) Glycoconjugate J 13: 687–92.

    Google Scholar 

  39. Fang J, Li J, Chen X, Zhang Y, Wang J, Guo Z, Zhang W, Yu L, Brew K, Wang PG (1998) J Am Chem Soc 120: 6635–38.

    Google Scholar 

  40. Dobrogosz WJ (1968) J Bacteriol 95: 578–84.

    Google Scholar 

  41. White RJ (1968) Biochem J 106: 847–58.

    Google Scholar 

  42. Freese EB, Cole RM, Klofat W, Freese E (1970) J Bacteriol 101: 1046–62.

    Google Scholar 

  43. Mengin-Lecreulx D, van Heijenoort J (1993) J Bacteriol 175: 6150–57.

    Google Scholar 

  44. Mengin-Lecreulx D, van Heijenoort J (1994) J Bacteriol 176: 5788–95.

    Google Scholar 

  45. Hinderlich S, Nohring S, Weise C, Franke P, Stasche R, Reutter W (1998) Eur J Biochem 252: 133–39.

    Google Scholar 

  46. Asensio C, Ruiz-Amil M (1966) Methods Enzymol 9: 421–25.

    Google Scholar 

  47. Glaser L, Brown DH (1955) Proc Natl Acad Sci USA 41: 253–60.

    Google Scholar 

  48. Wagner RR, Cynkin MA (1968) Anal Biochem 25: 572–77.

    Google Scholar 

  49. Heidlas JE, Lees WJ, Pale P, Whitesides GM (1992) J Org Chem 57 146–51.

    Google Scholar 

  50. Korf U, Thimm J, Thiem J (1991) SynLett 313–15.

  51. Lang L, Kornfeld S (1984) Anal Biochem 140: 264–69.

    Google Scholar 

  52. Ropp PA, Cheng P-W (1990) Anal Biochem 187: 104–8.

    Google Scholar 

  53. Leiting B, Pryor KD, Eveland SS, Anderson MS (1998) Anal Biochem 256: 185–91.

    Google Scholar 

  54. Pastuszak I, O'Donnell J, Elbein AD (1996) J Biol Chem 271: 23653–56.

    Google Scholar 

  55. Pastuszak I, Drake R, Elbein AD (1996) J Biol Chem 271: 20776–82.

    Google Scholar 

  56. Sunthankar P, Pastuszak I, Rooke A, Elbein AD, van de Rijn I, Canfield WM, Drake RR (1998) Anal Biochem 258: 195–201.

    Google Scholar 

  57. Look GC, Ichikawa Y, Shen G-J, Cheng P-W, Wong C-H (1993) J Org Chem 58: 4326–30.

    Google Scholar 

  58. Mio T, Yabe T, Arisawa M, Yamada-Okabe H (1998) J Biol Chem 273: 14392–97.

    Google Scholar 

  59. Maley F, Maley GF (1959) Biochim Biophys Acta 31: 577–78.

    Google Scholar 

  60. Piller F, Hanlon MH, Hill RL (1983) J Biol Chem 258: 10774–78.

    Google Scholar 

  61. Kingsley DM, Kozarsky KF, Hobbie L, Krieger M (1986) Cell 44: 749–59.

    Google Scholar 

  62. Glaser L (1959) J Biol Chem 234: 2801–5.

    Google Scholar 

  63. Piller F, Eckhardt AE, Hill RL (1982) Anal Biochem 127: 171–77.

    Google Scholar 

  64. Maley F, Tarentino AL, McGarrahan JF, DelGiacco R (1968) Biochem J 107: 637–44.

    Google Scholar 

  65. Szumilo T, Zeng Y, Pastuszak I, Drake R, Szumilo H, Elbein AD (1996) J Biol Chem 271: 13147–54.

    Google Scholar 

  66. Gehring AM, Lees WJ, Mindiola DJ, Walsh CT, Brown ED (1996) Biochemistry 35: 579–85.

    Google Scholar 

  67. Bülter T, Wandrey C, Elling L (1997) Carbohydr Res 305: 469–73.

    Google Scholar 

  68. Maley F (1970) Biochem Biophys Res Commun 39: 371–78.

    Google Scholar 

  69. Feingold DS, Barber GA (1990) Methods Plant Biochem 2: 39–78.

    Google Scholar 

  70. Neufeld EF, Hall CW (1965) Biochem Biophys Res Commun 19: 456–61.

    Google Scholar 

  71. Zalitis J, Feingold DS (1968) Biochem Biophys Res Commun 31: 693–98.

    Google Scholar 

  72. Simon ES, Grabowski S, Whitesides GM (1990) J Org Chem 55: 1834–41.

    Google Scholar 

  73. Drake RR, Zimniak P, Haley BE, Lester R, Elbein AD, Radominska A (1991) J Biol Chem 266: 23257–60.

    Google Scholar 

  74. Toone EJ, Simon ES, Whitesides GM (1991) J Org Chem 56: 5603–6.

    Google Scholar 

  75. Ankel H, Feingold DS (1965) Biochemistry 4: 2468–75.

    Google Scholar 

  76. Varughese JK, Schutzbach JS, Ankel H (1977) J Biol Chem 252: 8013–17.

    Google Scholar 

  77. Kyossev ZN, Drake RR, Kyosseva SV, Elbein AD (1995) Eur J Biochem 228: 109–12.

    Google Scholar 

  78. Stasche R, Hinderlich S, Weise C, Effertz K, Lucka L, Moormann P, Reutter W (1997) J Biol Chem 272: 24319–24.

    Google Scholar 

  79. Munster AK, Eckhardt M, Potvin B, Muhlenhoff M, Stanley P, Gerardy-Schahn R (1998) Proc Natl Acad Sci USA 95: 9140–45.

    Google Scholar 

  80. Uchida Y, Tsukada Y, Sugimori T (1985) Agric Biol Chem 49: 181–87.

    Google Scholar 

  81. Ohta Y, Shimosaka M, Murata K, Tsukada Y, Kimura A (1986) Appl Microbiol Biotechnol 24: 386–91.

    Google Scholar 

  82. Kragl U, Gygax D, Ghisalba O, Wandrey C (1991) Angew Chem Int Ed Engl 30: 827–28.

    Google Scholar 

  83. Kragl U, Kittelmann M, Ghisalba O, Wandrey C (1995) Ann N Y Acad Sci 750: 300–305.

    Google Scholar 

  84. Augé C, Gautheron C (1988) Tetrahedron Lett 29: 789–90.

    Google Scholar 

  85. Comb DG, Roseman S (1958) J Am Chem Soc 80: 497–99.

    Google Scholar 

  86. Kim M-J, Hennen WJ, Sweers HM, Wong C-H (1988) JAmChem Soc 110: 6481–86.

    Google Scholar 

  87. Simon ES, Bednarski MD, Whitesides GM (1988) J Am Chem Soc 110: 7159–63.

    Google Scholar 

  88. Warren L, Blacklow RS (1962) J Biol Chem 237: 3527–34.

    Google Scholar 

  89. Arce A, Maccioni HF, Caputto R (1966) Arch Biochem Biophys 116: 52–58.

    Google Scholar 

  90. Kean EL, Roseman S (1966) Methods Enzymol 8: 208–15.

    Google Scholar 

  91. Spiro MJ, Spiro RG (1968) J Biol Chem 243: 6520–28.

    Google Scholar 

  92. van den Eijnden DH, van Dijk W (1972) Hoppe-Seyler's Z Physiol Chem 353: 1817–20.

    Google Scholar 

  93. Schauer R, Wember M, Ferreira do Amaral C (1972) Hoppe-Seyler's Z Physiol Chem 353: 883–86.

    Google Scholar 

  94. Haverkamp J, Beau JM, Schauer R (1979) Hoppe-Seyler's Z Physiol Chem 360: 159–66.

    Google Scholar 

  95. Higa HH, Paulson JC (1985) J Biol Chem 260: 8838–49.

    Google Scholar 

  96. Thiem J, Treder W (1986) Angew Chem Int Ed Engl 25: 1096–97.

    Google Scholar 

  97. Thiem J, Stangier P (1990) Liebigs Ann Chem: 1101–5.

  98. Ichikawa Y, Liu JL-C, Shen G-J, Wong C-H (1991) J Am Chem Soc 113: 6300–2.

    Google Scholar 

  99. Shames SL, Simon ES, Christopher CW, Schmid W, Whitesides GM, Yang L-L (1991) Glycobiology 1: 187–91.

    Google Scholar 

  100. Shen G-J, Liu JL-C, Wong C-H (1992) Biocatalysis 6: 31–42.

  101. Kittelmann M, Klein T, Kragl U, Wandrey C, Ghisalba O (1995) Appl Microbiol Biotechnol 44: 59–67.

    Google Scholar 

  102. Kragl U, Klein T, Vasic-Racki D, Kittelmann M, Ghisalba O, Wandrey C (1996) Ann N Y Acad Sci 799: 577–83.

    Google Scholar 

  103. Vann WF, Silver RP, Abeijon C, Chang K, Aaronson W, Sutton A, Finn CW, Lindner W, Kotsatos M (1987) J Biol Chem 262: 17556–62.

    Google Scholar 

  104. Zapata G, Vann WF, Aaronson W, Lewis MS, Moos M (1989) J Biol Chem 264: 14769–74.

    Google Scholar 

  105. Augé C, Fernandez-Fernandez R, Gautheron C (1990) Carbohydr Res 200: 257–68. 268.

    Google Scholar 

  106. Gilbert M, Bayer R, Cunningham A-M, DeFrees S, Gao Y, Watson DC, Young NM, Wakarchuk WW (1998) Nature Biotechnology 16: 769–72.

    Google Scholar 

  107. Rosen SM, Zeleznick LD (1966) Methods Enzymol 8: 145–47.

    Google Scholar 

  108. Preiss J, Greenberg E (1967) Anal Biochem 18: 464–71.

    Google Scholar 

  109. Braell WA (1976) Anal Biochem 74: 484–87.

    Google Scholar 

  110. Grier TJ, Rasmussen JR (1982) Anal Biochem 127: 100–4.

    Google Scholar 

  111. Pallanca JE, Turner NJ (1993) J Chem Soc Perkin Trans 1: 3017–22.

    Google Scholar 

  112. Szumilo T, Drake RR, J. LY, Elbein AD (1993) J Biol Chem 268: 17943–50.

    Google Scholar 

  113. Elling L, Ritter JE, Verseck S (1996) Glycobiology 6: 591–97.

  114. Fey S, Elling L, Kragl U (1997) Carbohydr Res 305: 475–81.

    Google Scholar 

  115. Wang P, Shen G-J, Wang Y-F, Ichikawa Y, Wong C-H (1993)J Org Chem 58: 3985–90.

    Google Scholar 

  116. Ginsburg V (1958) J Am Chem Soc 80: 4426.

    Google Scholar 

  117. Ginsburg V (1960) J Biol Chem 235: 2196–201.

    Google Scholar 

  118. Ginsburg V (1961) J Biol Chem 236: 2389–93.

    Google Scholar 

  119. Foster DW, Ginsburg V (1961) Biochim Biophys Acta 54: 376–78.

    Google Scholar 

  120. Overton K, Serif GS (1981) Biochim Biophys Acta 675: 281–4.

    Google Scholar 

  121. Bulet P, Hoflack B, Porchet M, Verbert A (1984) Eur J Biochem 144: 255–59.

    Google Scholar 

  122. Liao T-H, Barber GA (1972) Biochim Biophys Acta 276: 85–93.

    Google Scholar 

  123. Broschat KO, Chang S, Serif G (1985) Eur J Biochem 153: 397–401.

    Google Scholar 

  124. Yamamoto K, Katayama I, Onoda Y, Inami M, Kumagai H, Tochikura T (1993) Arch Biochem Biophys 300: 694–98.

    Google Scholar 

  125. Bonin CP, Potter I, Vanzi GF, Reiter W-D (1997) Proc Natl Acad Sci USA 94: 2085–90.

    Google Scholar 

  126. Sturia L, Disso A, Zanardi D, Benatti U, De Flora, Tonetti M (1997) FEBS Lett 412: 126–30.

    Google Scholar 

  127. Sullivan FX, Kumar R, Kriz R, Stahl M, Xu G-Y, Rouse J, Chang X-J, Boodhoo A, Potvin B, Cumming DA (1998) J Biol Chem 273: 8193–202.

    Google Scholar 

  128. Ohyama C, Smith PL, Angata K, Fukuda MN, Lowe JB, Fukuda M (1998) J Biol Chem 273: 14582–87.

    Google Scholar 

  129. Kornfeld RH, Ginsburg V (1966) Biochem Biophys Acta 117: 79–87.

    Google Scholar 

  130. Chang S, Duenr B, Serif G (1988) J Biol Chem 263: 1693–97.

    Google Scholar 

  131. Tonetti M, Sturia L, Bisso A, Benatti U, De Flora A (1996) J Biol Chem 271: 27274–79.

    Google Scholar 

  132. Andrianopoulos K, Wang L, Reeves PR (1998) J Bacteriol 180: 998–1001.

    Google Scholar 

  133. Tonetti M, Rizzi M, Vigevani P, Sturla L, Bisso A, De Flora A, Bolognesi M (1998) Acta Cryst 54: 684–86.

    Google Scholar 

  134. Bekesi JG, Winzler RJ (1967) J Biol Chem 24: 3873–79.

    Google Scholar 

  135. Coffey JW, Neal Miller O, Sellinger OZ (1964) J Biol Chem 239: 4011–17.

    Google Scholar 

  136. Ishihara H, Massaro DJ, Heath EC (1968) J Biol Chem 243: 1103–9.

    Google Scholar 

  137. Ishihara H, Heath EC (1968) J Biol Chem 243: 1110–15.

    Google Scholar 

  138. Schachter H, Ishihara H, Heath EC (1972) Methods Enzymol 28: 285–87.

    Google Scholar 

  139. Prohaska R, Schenkel-Brunner H (1975) Anal Biochem 69: 536–44.

    Google Scholar 

  140. Stiller R, Thiem J (1992) Liebigs Ann Chem 467–71.

  141. Kilker RD, Shuey DK, Serif GS (1979) Biochem Biophys Acta 570: 271–83.

    Google Scholar 

  142. Park SH, Pastuszak I, Drake R, Elbein AD (1998) J Biol Chem 273: 5685–91.

    Google Scholar 

  143. Ginsburg V (1966) Methods Enzymol 8: 293–95.

    Google Scholar 

  144. Yamamoto K, Maruyama T, Kumagai H, Tochikura T, Seno T, Yamaguchi H (1984) Agric Biol Chem 48: 823–24.

    Google Scholar 

  145. Ichikawa Y, Lin Y-C, Dumas DP, Shen G-J, Garcia-Junceda E, Williams MA, Bayer R, Ketcham C, Walker LE, Paulson JC, Wong C-H (1992) J Am Chem Soc 114: 9283–98.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bülter, T., Elling, L. Enzymatic synthesis of nucleotide sugars. Glycoconj J 16, 147–159 (1999). https://doi.org/10.1023/A:1026444726698

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026444726698

Navigation