Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

G-protein-independent signaling mediated by metabotropic glutamate receptors

Abstract

Synaptically released glutamate activates ionotropic and metabotropic receptors at central synapses. Metabotropic glutamate receptors (mGluRs) are thought to modulate membrane conductances through transduction cascades involving G proteins. Here we show, in CA3 pyramidal cells from rat hippocampus, that synaptic activation of type 1 mGluRs by mossy fiber stimulation evokes an excitatory postsynaptic response independent of G-protein function, while inhibiting an afterhyperpolarization current through a G-protein-coupled mechanism. Experiments using peptide activators and specific inhibitors identified a Src-family protein tyrosine kinase as a component of the G-protein-independent transduction pathway. These results represent the first functional evidence for a dual signaling mechanism associated with a heptahelical receptor such as mGluR1, in which intracellular transduction involves activation of either G proteins or tyrosine kinases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mossy-fiber-specific activation of a slow EPSC.
Figure 2: The slow EPSC is mediated by mGluR1.
Figure 3: The G-protein inhibitors NEM and GDPβS block adenosine responses, but not the mGluR EPSC.
Figure 4: Uncaging of GTPγS inhibits GABAB receptor IPSCs without affecting mGluR EPSCs.
Figure 5: Tyrosine kinase inhibitors suppress the mGluR EPSC.
Figure 6: Tyrosine phosphatase inhibition prolongs decay of the mGluR-mediated response.
Figure 7: Direct stimulation of Src kinase occludes mGluR1 activation.
Figure 8: Divergent signaling by mGluR1.

Similar content being viewed by others

References

  1. Sladeczek, F., Pin, J. P., Recasens, M., Bockaert, J. & Weiss, S. Glutamate stimulates inositol phosphate formation in striatal neurones. Nature 317, 717– 719 (1985).

    Article  CAS  Google Scholar 

  2. Conn, P. J. & Pin, J. P. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Toxicol. 37, 205–237 (1997).

    Article  CAS  Google Scholar 

  3. Anwyl, R. Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res. Rev. 29, 83– 120 (1999).

    Article  CAS  Google Scholar 

  4. Lujan, R., Nusser, Z., Roberts, J. D., Shigemoto, R. & Somogyi, P. Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur. J. Neurosci. 8, 1488–1500 (1996).

    Article  CAS  Google Scholar 

  5. Baude, A. et al. The metabotropic glutamate receptor (mGluR1α) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron 11, 771– 787 (1993).

    Article  CAS  Google Scholar 

  6. Shigemoto, R. et al. Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J. Neurosci. 17, 7503–7522 (1997).

    Article  CAS  Google Scholar 

  7. Hayashi, Y. et al. Role of a metabotropic glutamate receptor in synaptic modulation in the accessory olfactory bulb. Nature 366, 687–690 (1993).

    Article  CAS  Google Scholar 

  8. Scanziani, M., Salin, P. A., Vogt, K. E., Malenka, R. C. & Nicoll, R. A. Use-dependent increases in glutamate concentration activate presynaptic metabotropic glutamate receptors. Nature 385, 630–634 ( 1997).

    Article  CAS  Google Scholar 

  9. Charpak, S. & Gähwiler, B. H. Glutamate mediates a slow synaptic response in hippocampal slice cultures. Proc. R. Soc. Lond. B Biol. Sci. 243, 221–226 (1991).

    Article  CAS  Google Scholar 

  10. Gerber, U., Lüthi, A. & Gähwiler, B. H. Inhibition of a slow synaptic response by a metabotropic glutamate receptor antagonist in hippocampal CA3 pyramidal cells. Proc. R. Soc. Lond. B Biol. Sci. 254, 169– 172 (1993).

    Article  CAS  Google Scholar 

  11. Congar, P., Leinekugel, X., Ben-Ari, Y. & Crépel, V. A long-lasting calcium-activated nonselective cationic current is generated by synaptic stimulation or exogenous activation of group I metabotropic glutamate receptors in CA1 pyramidal neurons. J. Neurosci. 17 , 5366–5379 (1997).

    Article  CAS  Google Scholar 

  12. Pozzo Miller, L. D., Petrozzino, J. J. & Connor, J. A. G protein-coupled receptors mediate a fast excitatory postsynaptic current in CA3 pyramidal neurons in hippocampal slices. J. Neurosci. 15, 8320–8330 (1995).

    Article  CAS  Google Scholar 

  13. Hall, R. A., Premont, R. T. & Lefkowitz, R. J. Heptahelical receptor signaling: beyond the G-protein paradigm. J. Cell Biol. 145, 927– 932 (1999).

    Article  CAS  Google Scholar 

  14. Kamiya, H., Shinozaki, H. & Yamamoto, C. Activation of metabotropic glutamate receptor type 2/3 suppresses transmission at rat hippocampal mossy fibre synapses. J. Physiol. (Lond.) 493, 447–455 (1996).

    Article  CAS  Google Scholar 

  15. Pankratov, Y., Castro, E., Miras-Portugal, M. T. & Krishtal, O. A purinergic component of the excitatory postsynaptic current mediated by P2X receptors in the CA1 neurons of the rat hippocampus. Eur. J. Neurosci. 10, 3898–3902 (1998).

    Article  CAS  Google Scholar 

  16. Jabaudon, D. et al. Inhibition of uptake unmasks rapid extracellular turnover of glutamate of nonvesicular origin. Proc. Natl. Acad. Sci. USA 96, 8733–8738 ( 1999).

    Article  CAS  Google Scholar 

  17. Brabet, I., Mary, S., Bockaert, J. & Pin, J. P. Phenylglycine derivatives discriminate between mGluR1- and mGluR5-mediated responses. Neuropharmacology 34, 895–903 ( 1995).

    Article  CAS  Google Scholar 

  18. Moroni, F. et al. Pharmacological characterization of 1-aminoindan-1,5-dicarboxylic acid, a potent mGluR1 antagonist. J. Pharmacol. Exp. Ther. 281, 721–729 (1997).

    CAS  PubMed  Google Scholar 

  19. Gasparini, F. et al. 2-Methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective and systemically active mGlu5 receptor antagonist. Neuropharmacology 38, 1493–1503 ( 1999).

    Article  CAS  Google Scholar 

  20. Doherty, A. J., Palmer, M. J., Henley, J. M., Collingridge, G. L. & Jane, D. E. (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) activates mGlu5, but not mGlu1, receptors expressed in CHO cells and potentiates NMDA responses in the hippocampus. Neuropharmacology 36, 265–267 ( 1997).

    Article  CAS  Google Scholar 

  21. Winslow, J. W., Bradley, J. D., Smith, J. A. & Neer, E. J. Reactive sulfhydryl groups of α39, a guanine nucleotide-binding protein from brain. Location and function. J. Biol. Chem. 262 , 4501–4507 (1987).

    CAS  PubMed  Google Scholar 

  22. Shapiro, M. S., Wollmuth, L. P. & Hille, B. Modulation of Ca2+ channels by PTX-sensitive G-proteins is blocked by N-ethylmaleimide in rat sympathetic neurons. J. Neurosci. 14, 7109–7116 (1994).

    Article  CAS  Google Scholar 

  23. Dunwiddie, T. V. & Haas, H. L. Adenosine increases synaptic facilitation in the in vitro rat hippocampus: evidence for a presynaptic site of action. J. Physiol. (Lond.) 369, 365–377 (1985).

    Article  CAS  Google Scholar 

  24. Trussell, L. O. & Jackson, M. B. Dependence of an adenosine-activated potassium current on a GTP-binding protein in mammalian central neurons. J. Neurosci. 7, 3306– 3316 (1987).

    Article  CAS  Google Scholar 

  25. Eckstein, F., Cassel, D., Levkovitz, H., Lowe, M. & Selinger, Z. Guanosine 5′-O-(2-thiodiphosphate). An inhibitor of adenylate cyclase stimulation by guanine nucleotides and fluoride ions. J. Biol. Chem. 254, 9829– 9834 (1979).

    CAS  PubMed  Google Scholar 

  26. Siciliano, J. C., Toutant, M., Derkinderen, P., Sasaki, T. & Girault, J. A. Differential regulation of proline-rich tyrosine kinase 2/cell adhesion kinase β (PYK2/CAKβ) and pp125(FAK) by glutamate and depolarization in rat hippocampus. J. Biol. Chem. 271, 28942–28946 ( 1996).

    Article  CAS  Google Scholar 

  27. Peavy, R. D. & Conn, P. J. Phosphorylation of mitogen-activated protein kinase in cultured rat cortical glia by stimulation of metabotropic glutamate receptors. J. Neurochem. 71, 603 –612 (1998).

    Article  CAS  Google Scholar 

  28. Boxall, A. R. & Lancaster, B. Tyrosine kinases and synaptic transmission. Eur. J. Neurosci. 10, 2– 7 (1998).

    Article  CAS  Google Scholar 

  29. Hanke, J. H. et al. Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J. Biol. Chem. 271, 695–701 (1996).

    Article  CAS  Google Scholar 

  30. Swarup, G., Speeg, K. V. J., Cohen, S. & Garbers, D. L. Phosphotyrosyl-protein phosphatase of TCRC-2 cells. J. Biol. Chem. 257, 7298–7301 ( 1982).

    CAS  PubMed  Google Scholar 

  31. Liu, X. et al. Regulation of c-Src tyrosine kinase activity by the Src SH2 domain. Oncogene 8, 1119– 1126 (1993).

    CAS  PubMed  Google Scholar 

  32. Vignes, M. & Collingridge, G. L. The synaptic activation of kainate receptors. Nature 388, 179– 182 (1997).

    Article  CAS  Google Scholar 

  33. Castillo, P. E., Malenka, R. C. & Nicoll, R. A. Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature 388, 182–186 (1997).

    Article  CAS  Google Scholar 

  34. Kehoe, J. Glutamate activates a K+ conductance increase in Aplysia neurons that appears to be independent of G proteins. Neuron 13, 691–702 (1994).

    Article  CAS  Google Scholar 

  35. Guérineau, N. C., Bossu, J. L., Gähwiler, B. H. & Gerber, U. Activation of a nonselective cationic conductance by metabotropic glutamatergic and muscarinic agonists in CA3 pyramidal neurons of the rat hippocampus. J. Neurosci. 15, 4395–4407 (1995).

    Article  Google Scholar 

  36. Zheng, F., Hasuo, H. & Gallagher, J. P. 1S,3R-ACPD-preferring inward current in rat dorsolateral septal neurons is mediated by a novel excitatory amino acid receptor. Neuropharmacology 34, 905–917 (1995).

    Article  CAS  Google Scholar 

  37. Luttrell, L. M. et al. β-arrestin-dependent formation of β2 adrenergic receptor-Src protein kinase complexes. Science 283, 655–661 (1999).

    Article  CAS  Google Scholar 

  38. Tu, J. C. et al. Coupling of mGluR/Homer and PSD-95 complexes by the shank family of postsynaptic density proteins. Neuron 23, 583–592 (1999).

    Article  CAS  Google Scholar 

  39. Tu, J. C. et al. Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 21, 717–726 ( 1998).

    Article  CAS  Google Scholar 

  40. Jonas, E. A. & Kaczmarek, L. K. Regulation of potassium channels by protein kinases. Curr. Opin. Neurobiol. 6, 318–323 (1996).

    Article  CAS  Google Scholar 

  41. Wang, Y. T. & Salter, M. W. Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature 369, 233–235 (1994).

    Article  CAS  Google Scholar 

  42. Lu, Y. M., Roder, J. C., Davidow, J. & Salter, M. W. Sr c activation in the induction of long-term potentiation in CA1 hippocampal neurons. Science 279, 1363– 1367 (1998).

    Article  CAS  Google Scholar 

  43. Dale, T. C. Signal transduction by the Wnt family of ligands. Biochem. J. 329, 209–223 (1998).

    Article  CAS  Google Scholar 

  44. Milne, J. L., Kim, J. Y. & Devreotes, P. N. Chemoattractant receptor signaling: G protein-dependent and -independent pathways. Adv. Second Messenger Phosphoprotein Res. 31, 83–104 ( 1997).

    Article  CAS  Google Scholar 

  45. Marrero, M. B. et al. Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature 375, 247–250 (1995).

    Article  CAS  Google Scholar 

  46. Mitchell, R. et al. Rhodopsin-family receptors associate with small G-proteins to activate phospholipase D. Nature 392, 411–414 (1998).

    Article  CAS  Google Scholar 

  47. Eccles, J. C. & McGeer, P. L. Ionotropic and metabotropic neurotransmission. Trends Neurosci. 2, 39– 40 (1979).

    Article  Google Scholar 

  48. Gähwiler, B. H., Thompson, S. M., McKinney, R. A., Debanne, D. & Robertson, R. T. in Culturing Nerve Cells (eds Banker, G. & Goslin, K.) 379–411 (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  49. Lancaster, B. & Rogers, M. V. A peptide activator of endogenous tyrosine kinase enhances synaptic currents mediated by NMDA receptors. Eur. J. Neurosci. 10, 2302–2308 (1998).

    Article  CAS  Google Scholar 

  50. Trudel, S., Paquet, M. R. & Grinstein, S. Mechanism of vanadate-induced activation of tyrosine phosphorylation and of the respiratory burst in HL60 cells. Role of reduced oxygen metabolites. Biochem. J. 276, 611 –619 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Heeb, L. Rietschin and R. Schöb for technical assistance, F. Pouille for the help with acute slices and D. Jabaudon, A. Lüthi, F. Loup, O. Raineteau and N. Arnth-Jensen for discussions and for reading the manuscript. We also thank N. Guérineau for initial experiments with tyrosine kinase inhibitors. Supported by Novartis (C.H.), the Prof. Dr. Max Cloëtta Foundation (U.G.) and a Swiss National Science Foundation grant 31-45547.95 (U.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Heuss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heuss, C., Scanziani, M., Gähwiler, B. et al. G-protein-independent signaling mediated by metabotropic glutamate receptors . Nat Neurosci 2, 1070–1077 (1999). https://doi.org/10.1038/15996

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/15996

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing