Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The CED-4-homologous protein FLASH is involved in Fas-mediated activation of caspase-8 during apoptosis

An Erratum to this article was published on 01 July 1999

Abstract

Fas is a cell-surface receptor molecule that relays apoptotic (cell death) signals into cells. When Fas is activated by binding of its ligand, the proteolytic protein caspase-8 is recruited to a signalling complex known as DISC by binding to a Fas-associated adapter protein. A large new protein, FLASH, has now been identified by cloning of its complementary DNA. This protein contains a motif with oligomerizing activity whose sequence is similar to that of the Caenorhabditis elegans protein CED-4, and another domain (DRD domain) that interacts with a death-effector domain in caspase-8 or in the adapter protein. Stimulated Fas binds FLASH, so FLASH is probably a component of the DISC signalling complex. Transient expression of FLASH activates caspase-8, whereas overexpression of a truncated form of FLASH containing only one of its DRD or CED-4-like domains does not allow activation of caspase-8 and Fas-mediated apoptosis to occur. Overexpression of full-length FLASH blocks the anti-apoptotic effect of the adenovirus protein E1B19K. FLASH is therefore necessary for the activation of caspase-8 in Fas-mediated apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of mouse FLASH and sequence comparison.
Figure 2: Tissue distribution of mouse FLASH mRNA.
Figure 3: Overexpressed FLASH interacts with caspase-8, FADD and Fas in mammalian cells.
Figure 4: Endogenous FLASH was recruited to activated Fas in mouse WR19L12a and human SKW64 and Jurkat cells.
Figure 5: Effects of transfected FLASH and its mutants on activation of caspase-8 and Fas-induced apoptosis.
Figure 6: Self-association of FLASH through its CED-4-homologous domain.
Figure 7: FLASH attenuates the anti-apoptotic effect of adenovirus protein E1B19K.

Similar content being viewed by others

References

  1. Itoh, N.et al. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66, 233– 243 (1991).

    Article  CAS  Google Scholar 

  2. Nagata, S. Apoptosis by death factor. Cell 88, 355– 365 (1997).

    Article  CAS  Google Scholar 

  3. Yonehara, S., Ishii, A. & Yonehara, M. Acell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J. Exp. Med. 169, 1747– 1756 (1989).

    Article  CAS  Google Scholar 

  4. Trauth, B. C.et al. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245, 301– 305 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Suda, T., Takahashi, T., Golstein, P. & Nagata, S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75, 1169 –1178 (1993).

    Article  CAS  Google Scholar 

  6. Chinnaiyan, A. M., O'Rourke, K., Tewari, M. & Dixit, V. M. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81, 505– 512 (1995).

    Article  CAS  Google Scholar 

  7. Boldin, M. P.et al. Anovel protein that interacts with the death domain of Fas/APO1 contain a sequence motif related to the death domain. J. Biol. Chem. 270, 7795–7798 ( 1995).

    Article  CAS  Google Scholar 

  8. Yeh, W. C.et al. FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 279, 1954–1958 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Zhang, J.et al. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 392, 296–300 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Kischkel, F. C.et al . Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14, 5579–5588 ( 1995).

    Article  CAS  Google Scholar 

  11. Boldin, M. P., Goncharov, T. M., Goltsev, Y. V. & Wallach, D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85, 803–815 (1996).

    Article  CAS  Google Scholar 

  12. Muzio, M.et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85, 817–827 ( 1996).

    Article  CAS  Google Scholar 

  13. Muzio, M.et al. An induced proximity model for caspase-8 activation. J. Biol. Chem. 273, 2926–2930 (1998).

    Article  CAS  Google Scholar 

  14. Yang, X., Chang, H. Y. & Baltimore, D. Autoproteolytic activation of pro-caspases by oligomerization. Mol. Cell 1, 319–325 (1998).

    Article  CAS  Google Scholar 

  15. Enari, M., Talanian, R. V., Wong, W. W. & Nagata, S. Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis. Nature 380, 723– 726 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Takahashi, A.et al. Affinity labeling displays the stepwise activation of ICR-related proteases by Fas, staurosporine, and CrmA-sensitive caspase-8. Oncogene 14, 2741–2752 ( 1997).

    Article  CAS  Google Scholar 

  17. Fernandes-Alnemri, T., Litwack, G. & Alnemri, E. S. Mch2, a new member of the apoptotic Ced-3/Ice cysteine protease gene family. Cancer Res. 55, 2737 –2742 (1995).

    CAS  PubMed  Google Scholar 

  18. Villa, P., Kaufmann, S. H. & Earnshaw, W. C. Caspases and caspase inhibitors. Trends Biochem. Sci. 22, 388–393 (1997).

    Article  CAS  Google Scholar 

  19. Rudel, T. & Bokoch, G. M. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 276, 1571–1571 ( 1997).

    Article  CAS  Google Scholar 

  20. Enari, M.et al. Acaspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43– 50 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Chinnaiyan, A. M.et al. Role of CED-4 in the activation of CED-3. Nature 388, 728–729 ( 1997).

    Article  ADS  CAS  Google Scholar 

  22. Li, P.et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997).

    Article  CAS  Google Scholar 

  23. Perez, D. & White, E. E1B 19K inhibits Fas-mediated apoptosis through FADD-dependent sequestration of FLICE. J. Cell Biol. 141, 1255–1266 (1998).

    Article  CAS  Google Scholar 

  24. Scaffidi, C.et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17, 1675–1687 ( 1998).

    Article  CAS  Google Scholar 

  25. Kozak, M. The scanning model for translation: an update. J. Cell Biol. 108, 229–241 (1989).

    Article  ADS  CAS  Google Scholar 

  26. Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthetase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1, 945–951 (1982).

    Article  CAS  Google Scholar 

  27. Nigg, E. A. Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature 386, 779–787 ( 1997).

    Article  ADS  CAS  Google Scholar 

  28. Wada, A., Fukuda, M., Mishima, M. & Nishida, E. Nuclear export of actin: a novel mechanism regulating the subcellular localization of a major cytoskeletal protein. EMBO J. 17, 1635– 1741 (1998).

    Article  CAS  Google Scholar 

  29. Medema, J. P.et al. FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J. 16, 2794 –2804 (1997).

    Article  CAS  Google Scholar 

  30. Yang, X., Chang, H. Y. & Baltimore, D. Essential role of CED-4 oligomerization in CED-3 activation and apoptosis. Science 281, 1355– 1357 (1998).

    Article  ADS  CAS  Google Scholar 

  31. Srinivasula, S. M., Ahmad, M., Fernandes-Alnemri, T. & Alnemri, E. S. Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol. Cell 1, 949–957 ( 1998).

    Article  CAS  Google Scholar 

  32. Liu, X., Zou, H., Slaughter, C. & Wang, X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89, 175– 184 (1997).

    Article  CAS  Google Scholar 

  33. Stegh, A. H.et al. DEDD, a novel death effector domain-containing protein, targeted to the nucleolus. EMBO J. 17, 5974– 5986 (1998).

    Article  CAS  Google Scholar 

  34. Medema, J. P., Scaffidi, C., Krammer, P. H. & Peter, M. E. Bcl-xL acts downstream of caspase-8 activation by the CD95 death-inducing signaling complex. J. Biol. Chem. 273, 3388 –3393 (1998).

    Article  CAS  Google Scholar 

  35. Li, H., Zhu, H., Xu, C. J. & Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491–501 (1998).

    Article  CAS  Google Scholar 

  36. Luo, X.et al. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481–490 ( 1998).

    Article  CAS  Google Scholar 

  37. Chinnaiyan, A. M., O'Rourke, K., Lane, B. R. & Dixit, V. M. Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death. Science 275, 1122– 1126 (1997).

    Article  CAS  Google Scholar 

  38. Hengartner, M. O. Apoptosis. CED-4 is a stranger no more. Nature 388, 714–715 (1997).

    Article  ADS  CAS  Google Scholar 

  39. Yang, J.et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129– 1132 (1997).

    Article  CAS  Google Scholar 

  40. Kluck, R. M., Bossy-Wetzel, E., Green, D. R. & Newmeyer, D. D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132– 1136 (1997).

    Article  CAS  Google Scholar 

  41. Pan, G., O'Rourke, K. & Dixit, V. M. Caspase-9, Bcl-XL, and Apaf-1 form a ternary complex. J. Biol. Chem. 273, 5841– 5845 (1998).

    Article  CAS  Google Scholar 

  42. Hu, Y.et al. Bcl-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation. Proc. Natl Acad. Sci. USA 95, 4386– 4391 (1998).

    Article  ADS  CAS  Google Scholar 

  43. Sakamaki, K., Tsukumo, S. & Yonehara, S. Molecular cloning and characterization of mouse caspase-8. Eur. J. Biochem. 253, 399– 405 (1998).

    Article  CAS  Google Scholar 

  44. 4. Sakamaki, K., Miyajima, I., Kitamura, T. & Miyajima, A. Critical cytoplasmic domains of the common beta subunit of the human GM- CSF, IL-3 and IL-5 receptors for growth signal transduction and tyrosine phosphorylation. EMBO J. 11, 3541–3549 (1992).

    Article  CAS  Google Scholar 

  45. Nishimura, Y.et al. Expression and function of mouse Fas antigen on immature and mature T cells. J. Immunol. 154, 4395– 4403 (1995).

    CAS  PubMed  Google Scholar 

  46. Eberstadt, M.et al. NMR structure and mutagenesis of the FADD (Mort1) death-effector domain. Nature 392, 941– 945 (1998).

    Article  ADS  CAS  Google Scholar 

  47. van der Biezen, E. A. & Jones, J. D. The NB-ARC domain: a novel signaling motif shared by plant resistance gene products and regulators of cell death in animals. Curr. Biol. 8, R226–227 (1998).

    Article  CAS  Google Scholar 

  48. Yonehara, S.et al. Involvement of apoptosis antigen Fas in clonal deletion of human thymocytes. Int. Immunol. 6, 1849– 1856 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Tsujimoto for cDNAs encoding Bcl-2 and SKW6.4 cells, D. V. Goeddel for mouse FADD cDNA, D. J. Pickup for CrmA cDNA, S. Hashimoto for antiserum against E1B19K, S.Tsukumo for pME18S-Flag2, H. Kazama for pME18S–Myc and FH2 cells, and Y. Nakanishi for HF1 cells. This work was supported in part by a Grant-in-Aid from the Ministry of Education, Science, Sports and Culture of Japan, and by the Ministry of Health and Welfare, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin Yonehara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imai, Y., Kimura, T., Murakami, A. et al. The CED-4-homologous protein FLASH is involved in Fas-mediated activation of caspase-8 during apoptosis. Nature 398, 777–785 (1999). https://doi.org/10.1038/19709

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/19709

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing