Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Developmental and activity- dependent regulation of kainate receptors at thalamocortical synapses

Abstract

Most of the fast excitatory synaptic transmission in the mammalian brain is mediated by ionotrophic glutamate receptors, of which there are three subtypes: AMPA (α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate), NMDA (N -methyl-D-aspartate) and kainate. Although kainate-receptor subunits (GluR5–7, KA1 and 2) are widely expressed in the mammalian central nervous system1,2, little is known about their function. The development of pharmacological agents that distinguish between AMPA and kainate receptors has now allowed the functions of kainate receptors to be investigated3,4. The modulation of synaptic transmission by kainate receptors5,6,7 and their synaptic activation8,9,10,11,12,13,14 in a variety of brain regions have been reported. The expression of kainate receptor subunits is developmentally regulated1,2 but their role in plasticity and development is unknown. Here we show that developing thalamocortical synapses express postsynaptic kainate receptors as well as AMPA receptors; however, the two receptor subtypes do not co-localize. During the critical period for experience-dependent plasticity, the kainate-receptor contribution to transmission decreases; a similar decrease occurs when long-term potentiation is induced in vitro. This indicates that during development there is activity-dependent regulation of the expression of kainate receptors at thalamocortical synapses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: KAR-mediated synaptic transmission at developing thalamocortical synapses.
Figure 2: KAR-mediated EPSCs can be evoked in the absence of an AMPAR component.
Figure 3: AMPAR-mediated spontaneous EPSCs do not have a KAR component.
Figure 4: Slow spontaneous EPSCs with similar kinetics and pharmacology to evoked kainate EPSCs coexist with AMPAR-mediated SEPSCs.
Figure 5: The KAR component of thalamocortical transmission decreases during the critical period.
Figure 6: LTP induction causes a rapid reduction in the KAR component of EPSCs.

Similar content being viewed by others

References

  1. Hollmann, M. & Heinemann, S. Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Bettler, B. & Mulle, C. Neurotransmitter receptors II. AMPA and kainate receptors. Neuropharmacology 34, 123–139 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Bleakman, D. & Lodge, D. Neuropharmacology of AMPA and kainate receptors. Neuropharmacology 37, 1187–1204 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Chittajallu, R., Braithwaite, S. P., Clarke, V. R. J. & Henley, J. M. Kainate receptors: subunits, synaptic localisation and function. Trends Pharmacol. Sci. 20, 26–35 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Chittajallu, R. et al. Regulation of glutamate release by presynaptic kainate receptors in the hippocampus. Nature 379, 78–81 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Clarke, V. R. J. et al. Ahippocampal GluR5 kainate receptor regulating inhibitory synaptic transmission. Nature 389, 599–603 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Rodríguez-Moreno, A., Herreras, O. & Lerma, J. Kainate receptors presynaptically downregulate GABAergic inhibition in the rat hippocampus. Neuron 19, 893–901 (1997).

    Article  PubMed  Google Scholar 

  8. Castillo, P. E., Malenka, R. C. & Nicoll, R. A. Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature 388, 182–186 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Vignes, M. & Collingridge, G. L. The synaptic activation of kainate receptors. Nature 388, 179–182 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Cossart, R., Esclapez, M., Hirsch, J. C., Bernard, C. & Ben-Ari, Y. GluR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells. Nature Neurosci. 1, 470–478 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Frerking, M., Malenka, R. C. & Nicoll, R. A. Synaptic activation of kainate receptors on hippocampal interneurons. Nature Neurosci. 1, 479–486 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Li, H. & Rogawski, M. A. GluR5 kainate receptor-mediated synaptic transmission in rat basolateral amygdala in vitro. Neuropharmacology 37, 1279–1286 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. DeVries, S. H. & Schwartz, E. A. Kainate receptors mediate synaptic transmission between cones and ‘Off’ bipolar cells in a mammalian retina. Nature 397, 157–160 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Li, P. et al. Kainate-receptor-mediated sensory synaptic transmission in mammalian spinal cord. Nature 397, 161–164 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Paternain, A. V., Morales, M. & Lerma, J. Selective antagonism of AMPA receptors unmasks kainate receptor-mediated responses in hippocampal neurons. Neuron 14, 185–189 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Wilding, T. J. & Huettner, J. E. Differential antagonism of alpha-amino-3-hydroxy-5-methyl-4-isozolepropionic acid-preferring and kainate-preferring receptors by 2,3-benzodiazepines. Mol. Pharmacol. 47, 582–587 (1995).

    CAS  PubMed  Google Scholar 

  17. Ruano, D., Lambolez, B., Rossier, J., Paternain, A. V. & Lerma, J. Kainate receptor subunits expressed in single cultured hippocampal neurons: molecular and functional variants by RNA editing. Neuron 14, 1009–1017 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Bowie, D. & Mayer, M. L. Inward rectification of both AMPA and kainate subtype glutamate receptors is generated by polyamine-mediated ion channel block. Neuron 15, 453–462 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Kamboj, S. K., Swanson, G. T. & Cull-Candy, S. G. Intracellular spermine confers rectification on rat calcium-permeable AMPA and kainate receptors. J. Physiol. 486, 297–303 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tóth, K. & McBain, C. J. Afferent-specific innervation of two distinct AMPA receptor subtypes on single hippocampal interneurons. Nature Neurosci. 1, 572–578 (1998).

    Article  PubMed  Google Scholar 

  21. Washburn, M. S., Numberger, M., Zhang, S. & Dingledine, R. Differential dependence on GluR2 expression of three characteristic features of AMPA receptors. J. Neurosci. 17, 9393–9406 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fox, K. The critical period for long-term potentiation in primary sensory cortex. Neuron 15, 485–488 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Crair, M. C. & Malenka, R. C. Acritical period for long-term potentiation at thalamocortical synapses. Nature 375, 325–328 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Isaac, J. T. R., Crair, M. C., Nicoll, R. A. & Malenka, R. C. Silent synapses during development of thalamocortical inputs. Neuron 18, 269–280 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Feldman, D. E., Nicoll, R. A., Malenka, R. C. & Isaac, J. T. R. Long-term depression at thalamocortical synapses in developing rat somatosensory cortex. Neuron 21, 347–357 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Kullmann, D. M. & Asztély, F. Extrasynaptic glutamate spillover in the hippocampus: evidence and implications. Trends Neurosci. 21, 8–14 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Paternain, A. V., Rodriguez-Moreno, A., Villarroel, A. & Lerma, J. Activation and desensitisation properties of native and recombinant kainate receptors. Neuropharmacology 37, 1249–1260 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Patneau, D. K. & Mayer, M. L. Structure–activity relationships for amino acid transmitter candidates acting at N -methyl-D-aspartate and quisqualate receptors. J. Neurosci. 10, 2385–2399 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rozov, A., Zilberter, Y., Wollmuth, L. P. & Burnashev, N. Facilitation of currents through rat Ca2+-permeable AMPA receptor channels by activity-dependent relief from polyamine block. J. Physiol. 511, 361–377 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Agmon, A. & Connors, B. W. Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro. Neuroscience 41, 365–379 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Collingridge, V. Clarke, R. Chittajallu, S.Braithwaite and J. Crabtree for advice and comments; W. W. Anderson for providing the data acquisition software; and D. Lodge (Eli Lilly and Co.) for supplying the GYKI 53655. This work was supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kidd, F., Isaac, J. Developmental and activity- dependent regulation of kainate receptors at thalamocortical synapses. Nature 400, 569–573 (1999). https://doi.org/10.1038/23040

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/23040

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing