Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interdomain communication regulating ligand binding by PPAR-γ

Abstract

Binding to receptors in the cell nucleus is crucial for the action of lipophilic hormones and ligands. PPAR-γ (for peroxisome proliferator-activated receptor) is a nuclear hormone receptor that mediates adipocyte differentiation1,2 and modulates insulin sensitivity3, cell proliferation4 and inflammatory processes5,6. PPAR-γ ligands have been implicated in the development of atherogenic foam cells7 and as potential cancer treatments8. Transcriptional activity of PPAR-γ is induced by binding diverse ligands, including natural fatty acid derivatives9,10,11, antidiabetic thiazolidinediones12, and non-steroidal anti-inflammatory drugs13. Ligand binding by PPAR-γ, as well as by the entire nuclear-receptor superfamily, is an independent property of the carboxy-terminal ligand-binding domain (LBD) of the receptor14,15. Here we show that ligand binding by PPAR-γ is regulated by intramolecular communication between its amino-terminal A/B domain and its carboxy-terminal LBD. Modification of the A/B domain, for example by physiological phosphorylation by MAP kinase, reduces ligand-binding affinity, thus negatively regulating the transcriptional and biological functions of PPAR-γ. The ability of the A/B domain to regulate ligand binding has important implications for the evaluation and mechanism of action of potentially therapeutic ligands that bind PPAR-γ and that are likely to extend to other members of the nuclear-receptor superfamily.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potency of BRL49653 depends upon the PPAR-γ A/B domain.
Figure 2: Potency of BRL49653 in co-activator recruitment to PPAR-γ LBD depends upon the A/B domain.
Figure 3: Affinity of BRL49653 for PPAR-γ depends upon the A/B domain.
Figure 4: The A/B domain regulates potency of BRL49653 in protease protection and the conformation of unliganded PPAR-γ.

Similar content being viewed by others

References

  1. Tontonoz, P., Hu, E. & Spiegelman, B. M. Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 79, 1147–1159 (1994).

    Article  CAS  Google Scholar 

  2. Shao, D. & Lazar, M. A. PPARγ, C/EBPα, cell cycle status and the commitment to adipocyte differentiation. J. Biol. Chem. 272, 21473–21478 (1997).

    Article  CAS  Google Scholar 

  3. Willson, T. M. et al. The structure–activity relationship between peroxisome proliferator-activated receptor γ and the antihyperglycemic activity of thiazolidinediones. J. Med. Chem. 39, 665–668 (1996).

    Article  CAS  Google Scholar 

  4. Altiok, S., Xu, M. & Spiegelman, B. M. PPARγ induces cell cycle withdrawal: inhibition of E2F/DP DNA-binding activity via down-regulation of PP2A. Genes Dev. 11, 1987–1998 (1997).

    Article  CAS  Google Scholar 

  5. Jiang, C., Tring, A. T. & Seed, B. PPAR-γ agonists inhibit productions of monocyte inflammatory cytokines. Nature 391, 82–86 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Ricote, M., Li, A. C., Willson, T. M., Kelly, C. J. & Glass, C. K. The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature 391, 79–82 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Nagy, L., Tontonoz, P., Alvarez, J. G., Chen, H. & Evans, R. M. Oxidized LDL regulates macrophage gene expression through activation of PPARγ. Cell 93, 229–240 (1998).

    Article  CAS  Google Scholar 

  8. Tontonoz, P. et al. Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor γ and the retinoid X receptor. Proc. Natl Acad. Sci. USA 94, 237–241 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Yu, K. et al. Differential activation of peroxisome proliferator-activated receptors by eicosanoids. J. Biol. Chem. 270, 23975–23983 (1995).

    Article  CAS  Google Scholar 

  10. Kliewer, S. A. et al. Aprostaglandin J2 metabolite binds peroxisome proliferator-activated receptor γ and promotes adipocyte differentiation. Cell 83, 813–819 (1995).

    Article  CAS  Google Scholar 

  11. Forman, B. M. et al. 15-deoxy, delta 12,14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ. Cell 83, 803–812 (1995).

    Article  CAS  Google Scholar 

  12. Lehman, J. M. et al. An antidiabetic thiazolidinedione is a high affinity ligand for the nuclear peroxisome proliferator-activated receptor γ (PPARγ). J. Biol. Chem. 270, 12953–12956 (1995).

    Article  Google Scholar 

  13. Lehmann, J. M., Lenhard, J. M., Oliver, B. B., Ringold, G. M. & Kliewer, S. A. Peroxisome proliferator-activated receptors α and γ are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J. Biol. Chem. 272, 3406–3410 (1997).

    Article  CAS  Google Scholar 

  14. Mangelsdorf, D. J. et al. The nuclear receptor superfamily: the second decade. Cell 83, 835–839 (1995).

    Article  CAS  Google Scholar 

  15. Wurtz, J. M. et al. Acanonical structure for the ligand binding domain of nuclear receptors. Nature Struct. Biol. 3, 87–94 (1996).

    Article  CAS  Google Scholar 

  16. Camp, H. S. & Tafuri, S. R. Regulation of peroxisome proliferator-activated receptor γ activity by mitogen-activated protein kinase. J. Biol. Chem. 272, 13452–13457 (1997).

    Article  Google Scholar 

  17. Adams, M., Reginato, M. J., Shao, D., Lazar, M. A. & Chatterjee, V. K. Transcriptional activation by PPARγ is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site. J. Biol. Chem. 272, 5128–5132 (1997).

    Article  CAS  Google Scholar 

  18. Hu, E., Kim, J. B., Sarraf, P. & Spiegelman, B. M. Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARγ. Science 274, 2100–2103 (1992).

    Article  ADS  Google Scholar 

  19. Allan, G. F. et al. Hormone and antihormone induce distinct conformational changes which are central to steroid receptor activation. J. Biol. Chem. 267, 19513–19520 (1992).

    CAS  Google Scholar 

  20. Berger, J. et al. Thiazolidinediones produce a conformational change in peroxisome proliferator-activated receptor-γ: binding and activation correlate with antidiabetic actions in db/db mice. Endocrinology 137, 4189–4195 (1996).

    Article  CAS  Google Scholar 

  21. Lavinsky, R. M. et al. Diverse signalling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc. Natl Acad. Sci. USA 95, 2920–2925 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Refetoff, S., Weiss, R. E. & Usala, S. J. The syndromes of resistance to thyroid hormone. Endocrine Rev. 14, 348–399 (1993).

    CAS  Google Scholar 

  23. Reginato, M. J., Krakow, S. L., Bailey, S. T. & Lazar, M. A. Prostaglandins promote and block adipogenesis through opposing effects on peroxisome proliferator-activated receptor γ. J. Biol. Chem. 273, 1855–1858 (1998).

    Article  CAS  Google Scholar 

  24. McBroom, L. D. B., Flock, G. & Giguere, V. The nonconserved hinge region and distinct amino-terminal domains of the RORα orphan nuclear receptor isoforms are required for proper DNA bending and RORα-DNA interactions. Mol. Cell. Biol. 15, 796–808 (1995).

    Article  CAS  Google Scholar 

  25. Tzagarakis-Foster, C. & Privalsky, M. L. Phosphorylation of thyroid hormone receptors by protein kinase A regulates DNA recognition by specific inhibition of receptor monomer binding. J. Biol. Chem. 273, 10926–10932 (1998).

    Article  CAS  Google Scholar 

  26. Bunone, G., Briand, P. A., Miksicek, R. J. & Picard, D. Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J. 15, 2174–2183 (1996).

    Article  CAS  Google Scholar 

  27. Kato, S. et al. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270, 1491–1494 (1995).

    Article  ADS  CAS  Google Scholar 

  28. McInerney, E. M., Tsai, M. J., O'Malley, B. W. & Katzenellenbogen, B. S. Analysis of estrogen receptor transcriptional enhancement by steroid hormone receptor coactivator. Proc. Natl Acad. Sci. USA 93, 10069–10073 (1996).

    Article  ADS  CAS  Google Scholar 

  29. Schwarz, E. J., Reginato, M. J., Shao, D., Krakow, S. L. & Lazar, M. A. Retinoic acid blocks adipogenesis by inhibiting C/EBPβ-mediated transcription. Mol. Cell. Biol. 17, 1552–1561 (1997).

    Article  CAS  Google Scholar 

  30. Krey, G. et al. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol. Endocrinol. 11, 779–791 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institute of Diabetes, Digestive, and Kidney Disease at the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell A. Lazar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, D., Rangwala, S., Bailey, S. et al. Interdomain communication regulating ligand binding by PPAR-γ. Nature 396, 377–380 (1998). https://doi.org/10.1038/24634

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/24634

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing